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Abstract Given the limitations of frequentist method for null hypothesis significance testing,
different authors recommend alternatives such as Bayesian inference. A poor under-
standing of both statistical frameworks is common among clinicians. The present is a
gentle narrative review of the frequentist and Bayesian methods intended for
physicians not familiar with mathematics. The frequentist p-value is the probability
of finding a value equal to or higher than that observed in a study, assuming that the
null hypothesis (H0) is true. The H0 is rejected or not based on a p threshold of 0.05, and
this dichotomous approach does not express the probability that the alternative
hypothesis (H1) is true. The Bayesian method calculates the probability of H1 and H0
considering prior odds and the Bayes factor (Bf). Prior odds are the researcher’s belief
about the probability of H1, and the Bf quantifies how consistent the data is concerning
H1 and H0. The Bayesian prediction is not dichotomous but is expressed in continuous
scales of the Bf and of the posterior odds. The JASP software enables the performance
of both frequentist and Bayesian analyses in a friendly and intuitive way, and its
application is displayed at the end of the paper. In conclusion, the frequentist method
expresses how consistent the data is with H0 in terms of p-values, with no consideration
of the probability of H1. The Bayesian model is a more comprehensive prediction
because it quantifies in continuous scales the evidence for H1 versus H0 in terms of the
Bf and the posterior odds.

Resumen Dadas las limitaciones del método de significancia frecuentista basado en la hipótesis
nula, diferentes autores recomiendan alternativas como la inferencia bayesiana. Es
común entre los médicos una comprensión deficiente de ambos marcos estadísticos.
Esta es una revisión narrativa amigable de los métodos frecuentista y bayesiano
dirigida quienes no están familiarizados con las matemáticas. El valor de p
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Introduction

Many scientific publications base their quantitative analyses
on null hypothesis significance testing and p-values, a theo-
retical framework developed almost a century ago by Ronald
Fisher,1 Jerzy Neyman, and Egon Pearson.2 However, an
increasing number of authors have pointed out the limita-
tions of this so-called ‘frequentist’ approach, mainly related
to the low reproducibility of the studies.3,4,5,6

In 2018, three major urological magazines, the Journal of
Urology, the British Journal of Urology, and European Urology,
published the ‘Guidelines for reporting of statistics for clini-
cal research in urology’, which state that we should not
continue describing the studies as ‘positive’ or ‘negative’
according to p-values.7,8,9 They encourage all researchers to
follow the American Statistical Association statement on p-
values, published in 2016,10 which declares that the proba-
bility that a hypothesis is true does not depend on the p-
value, and scientific conclusions should not be based on
specific p-value thresholds. The referred document proposes
alternatives like Bayesian estimations and methods that
emphasize estimation over testing, among others.10

Despite the mentioned publications, problems related to
the frequentist andBayesian hypothesis testmethods remain
difficult to understand for many physicians who are not
familiar with statistics and mathematics.11 In light of this,
the present narrative review offers an intuitive explanation
of the subject. Throughout the text, the concepts are exem-
plified by comparing the mean International Prostate Symp-
tom Score (IPSS) between two groups.

Frequentist Hypothesis Testing

Sampling Distribution and Sampling Error
Sampling distribution and sampling error are essential con-
cepts to understand the frequentist method. The sampling
distribution is the hypothetical distribution of data from
samples obtained from a population.12,13,14,15,16 Suppose a
hypothesis testing to compare the mean IPSS between a

group of patients who take medicine A and a groupwho take
medicine B. The population is the entire group of people
about whomwewant to carryout the study, and is defined by
the inclusion and exclusion criteria. Say we draw different
samples over and over from the population to compare the
effect ofmedicine A andmedicine B.Wewill obtain a value (a
difference between means, dm) from each one of these
samples. The sampling distribution is the curve obtained
from these values (►Figure 1).

The frequentist method is based on the assumption that
there are no differences between the groups in the popula-
tion. Therefore, in the case of a dm, the frequentist considers
that the population parameter is zero (the null hypothesis,
H0, is true). If that is the case, and we draw different
hypothetical samples from a population (in which H0 is
true), we would expect in each one of them a difference
between groups equal to zero. However, most results will be
different from zero due to the so-called sampling error: the
inaccuracy of working with a sample and not with the entire
population.17,18,19 We can build a hypothetical sample dis-
tribution curve despite the sampling error thanks to statisti-
cal methods and mathematical laws. The ‘law’ for a dm says
that the sampling distribution curve will be Gaussian, the
mean will be zero, and most samples will fall around zero.
These features are part of the Central Limit Theorem, de-
scribed more than 200 years ago, and applied when sample
sizes are larger than 6016,20 (►Figure 2 depicts an example).

Obtaining and Understanding the p-value
Unlike the examples in figure 1 and 2, researchers do not
work with the entire population or with many different
samples, but with a single sample. Once the result is
obtained, it is placed into the hypothetical sampling distri-
bution curve thanks to statistical methods such as the
Student t-test. That is possible because we can predict the
shape of the sampling distribution curve, as discussed before.
Then, we calculate the percentage of hypothetical samples
with an equal or higher value under the sampling

frecuentista es la probabilidad de encontrar un valor igual o superior al observado en
un estudio, asumiendo que la hipótesis nula (H0) es cierta. La H0 se rechaza o no con
base en un umbral p de 0.05, y este enfoque dicotómico no expresa la probabilidad
de que la hipótesis alternativa (H1) sea verdadera. El método bayesiano calcula la
probabilidad de H1 y H0 considerando las probabilidades a priori y el factor de Bayes
(fB). Las probabilidades a priori son la creencia del investigador sobre la probabilidad
de H1, y el fB cuantifica cuán consistentes son los datos con respecto a H1 y H0. La
predicción bayesiana no es dicotómica, sino que se expresa en escalas continuas del
fB y de las probabilidades a posteriori. El programa JASP permite realizar análisis
frecuentista y bayesiano de una forma simple e intuitiva, y su aplicación se muestra al
final del documento. En conclusión, el método frecuentista expresa cuán consistentes
son los datos con H0 en términos de valores p, sin considerar la probabilidad de H1. El
modelo bayesiano es una predicción más completa porque cuantifica en escalas
continuas la evidencia de H1 versus H0 en términos del fB y de las probabilidades a
posteriori.
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distribution curve: this percentage is the p-value. The p-value
is the probability of finding the same result or higher within
the hypothetical sampling distribution curve, assuming that
the sample comes from a population with no differences
between the two groups, that is, assuming that H0 is
true11,12,13 (►Figure 3). The p-value is a conditional proba-

bility because its calculation depends on the assumption
(condition) that H0 is correct and does not indicate the
probability that H0 is true, as many erroneously think.

Supposewe conduct a single study to comparemedication
A and medication B in terms of the mean IPSS, and the
difference obtained is 5 points. Then, we apply the Student t-

Fig. 1 Sampling distribution. The circle on the left shows the population (P) or group of people suitable to take medicine A or B, according to
inclusion and exclusion criteria. In the center, each small circle corresponds to a sample obtained from the population. Each letter corresponds to
individuals who take medicine A or medicine B. We obtain a difference between means (dm) from each sample, which is the difference between
the mean IPSS with medicine A and the mean International Prostate Symptom Score (IPSS) with medicine B. On the right, the results are grouped
in a curve, which is the sampling distribution curve. In the example, the curve is normal, but in other scenarios it might have a different
configuration.

Fig. 2 The Central Limit Theorem. The circle on the left shows the population (P) of patients suitable to take medicine A or medicine B.
Hypothesis testing assumes that in this population there are no differences between the mean IPSS with medication A and the mean IPSS with
medication B (that is, the dm is equal to zero: H0 is true). In the center, we draw many samples with at least 60 individuals (n � 60) from the
population P. We calculate in each sample a dm between A and B, which is not necessarily zero, due to the sampling error. On the right, all the
differences (dm) obtained are grouped in a sampling distribution curve, which will have a normal distribution. The mean of the curve is equal to
the difference in means in the population P, that is, zero.
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test to place the outcome in the sampling distribution curve.
Say the result is at one end of the sampling distribution
curve, and from that point are located 15% of the possible
hypothetical samples: the p-value, in this case, is 0.15. In
other words, if we assume that there are no differences
between the two groups in the population, and we perform
the study repeatedly, 15% of the studies will show a differ-
ence of 5 points or more (►Figure 3).

A p-value of 0.05means that the sample is at an extremeof
the sampling distribution because only 5% of the theoretical
studies carried out in the population will show a similar
result or higher. Traditionally, 0.05 is the threshold to suspect
that the H0 is less likely to be the case, and there are actual
differences between the two groups in the population,
namely, the population parameter is not the null value
(the alternative hypothesis, H1, is true).13 The 0.05 threshold
is called the level of statistical significance.11,12,13,21

The p-value is usually reported along with a 95% confi-
dence interval (CI). As aforementioned, the sample estimate
might be different from the population parameter due to the
sampling error. The 95% CI expresses the inaccuracy caused
by the sampling error and is a range in which the population
parameter might lie.22 If we draw samples over and over
from the population, 95% of themwill have a CI that contains
the populationparameter.22,23 For example, if the population
parameter is a dm¼3 (H1 true), and we obtain an infinite
number of samples from the population, for 95% of these
samples the 95% CI will contain the value 3. It is wrong to
state that there is a probability of 0.95 that the 95% CI
contains the population parameter. The probability of 0.95
refers to the proportion of infinite sampleswhose CI contains
the population parameter and does not apply to a single CI.22

The p-value dictates how rare it is to obtain a value equal to
or higher than the outcome of a single study if we assume no
real differences between the groups compared in the popula-

tion. Unfortunately, the p-value does not answer the funda-
mental question: what is the probability of a difference in the
population between the compared groups? The frequentist
method focuses on the wrong question: given a population
with no differences between the groups,what is the probabili-
ty of a result equal or more extreme than the one obtained?
The real question is: given the data, what is the probability of a
real differencebetweengroups in thepopulation? (What is the
probability of H1?) As we discuss now, the Bayesian method
offers the answer.

Bayesian Hypothesis Testing

Bayesian statistics calculate the probability that an event is
true considering the results obtained (the data) and the
knowledge that one has of this probability before developing
a study (the prior probability). It is based on the Bayes
theorem, formulated by Thomas Bayes, an 18th-century
English statistician.

The Bayesian framework deals with conditional probabil-
ity, which is the probability of an event given that another
event has occurred.24,25 Conditional probability is expressed
as p(A | B), and means ‘the probability of A, given that B
occurs’. Bayes’ theorem enables us to find a conditional
probability when we are provided with its inverse: if we
know p(A | B), we can calculate p(B | A).25 That is the case of
hypothesis testing: we seek the probability of a hypothesis
given the data p(H | data), and our data (the result of our
study) enables us to retrieve the probability of the data, given
the hypothesis p(data | H). In the example mentioned before
of medicine A versus medicine B, wewant to know if there is
in the population a difference in terms of the IPSS given the
outcome of a study [p(H1 | data)], and the study provides the
probability of the outcome obtained if we assume that H1 is
true [p(data | H1)].

Fig. 3 Calculation of the p-value, one tale test. The circle on the left shows the population P of patients suitable to take medicine A or B. We
assume no differences between the two groups in the population (that is, the dm is zero: H0 is true). In the center, a sample is obtained, with a
size � 60. We obtain a dm from the sample. On the right, according to the Central Limit Theorem, it is known in advance that the hypothetical
sample distribution follows a normal curve and has a mean equal to the population mean, which is zero. Thanks to these premises, the Student t
statistical test enables the location of the study’s result within the sampling distribution curve. Also, we calculate the percentage of hypothetical
samples whose results are equal to or higher than the result obtained in the studied sample. The percentage mentioned is the p-value. In the
example, the percentage was of 15%, that is, p¼ 0.15.
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Bayes formula for two rival hypothesis (H1 and H0) is
expressed in the form of odds:26

p ( H1 j data ) p ( H1) p ( data j H1 )
———————————¼————————— X —————————

p ( H0 j data ) p ( H0 ) p ( data j H0 )
posterior odds for H1vsH0 prior odds for H1vsH0 Bayes

Factor

In words, the posterior odds of H1 versus H0 given the
data is the product of the prior odds for H1 versus H0 times
the Bayes Factor (Bf).We can turn odds into probability (p) by
applying the formula p¼ odds/1þ odds.27 The prior odds are
what we believe before the study about the probability of H1
versus H0. The Bf is equal to the probability of the data, given
H1, divided by the probability of the data, given H0, and
represents the strength of evidence that the data provide for
H1 versus H0. For example, if we think a priori that the rival
hypotheses have the same probability [p(H1)/p(h0)¼0.5/0.5
¼1], and the Bf is 20 (that is, the observed data is 20 times
more likely under H1 than under H0), the posterior odds are
1�20¼20. Then, we turn odds into probability: p¼20/20
þ1¼0.95, and we conclude that the data has increased the
probability of H1 from 0.5 to 0.95. Note that, unlike the
frequentist method, this time we have answered the main
question: what is the probability of H1?

Prior Odds
Prior odds are researcher beliefs about how plausible are the
hypotheses.27,28,29,30 It is background knowledge that is
relevant when we make any conditional prediction, not
only in hypothesis testing. For instance, suppose two 65-
year-oldmale patients with a prostate-specific antigen (PSA)
level of 5 ng/ml. They live in the same geographical area. We
want to know the risk of prostate cancer given the PSA. The
first man is white, does not have a family history of prostate
cancer, and his prostate volume is of 80mL. The second man
is black, has a family history of prostate cancer, and his
prostate volume is of 20mL. Despite their similar PSA level
(the data), the black man has a higher probability of devel-
oping prostate cancer because of his higher pretest odds.

Prior odds are a subjective way to quantify uncertainty
and depend on the result of previous studies in the field,
theoretical considerations, biological plausibility, and basic
physiological knowledge.28,29,31,32When there is skepticism
towards H1, the researcher assigns low prior odds that H1 is
true. When it is more plausible, the prior odds will be high. A
study that compares a new selective alpha-blocker and
placebo to treat lower urinary tract symptoms secondary
to prostatic enlargement, for example, will have high prior
odds in favor of H1 because the benefit of alpha-blockers in
this scenario has been previously proven.

Bayes Factor
The Bf is a comparison of how well two hypotheses predict
the data. It is a measure of how likely the data is in a
hypothesis compared to another hypothesis.28,32 Therefore,
the Bf is not a probability but a ratio of probabilities.33 For

instance, if the Bf¼10 when we compare H1 versus H0, data
are 10 times more likely to have occurred under H1 than
under H0.

The English statistician Sir Harold Jeffreys proposed a
classification of the evidence for a hypothesis in terms of
specific Bf intervals28 (►Table 1). According to the scheme,
the Bf describes ‘anecdotal’, ‘moderate’, ‘strong’, ‘very strong’,
or ‘extreme’ relative evidence for a hypothesis. This set of
rigid labels facilitates scientific communication, but there is
no specific threshold to prefer H1 and reject H0.28,30,34 The Bf
does not yield a dichotomous decision (reject or not reject
H0) but a relative comparison of the hypothesis. Its value
must be interpreted along with the prior probability to
predict how likely is H1. Most Bayesian studies describe
the Bf but not the prior odds nor the posterior odds to enable
the reader to make their own conclusions according to their
beliefs.

The Bf depends on three elements: data likelihood, the
prior distribution, and the H0 specification.

Data likelihood. Likelihood is a term used to describe
the probability of observing data that have already been
collected.25,27 Suppose a study comparing the mean IPPS
between an alpha-blocker and placebo with a final result of
10 points. The parameter, in this case, is the dm. Data
likelihood estimates the probability of our data given the
infinite possible values of the parameter. If we consider
dm¼10 points, the probability of the study’s outcome (our
data, 10 points)will be high. If we consider dm¼5 points, the
probability of the outcome (our data, 10 points) will be low.
Wemake the same calculation for every possible value of the
parameter to draw a likelihood profile curve (also called
likelihood function curve).23,27,35 The curve says how likely
is the data for every value of the parameter. ►Figure 4

illustrates the example.
The prior distribution. A primary characteristic of the

Bayesian method is the uncertainty about the value of the
population parameter, unlike the frequentist analysis, in
which the parameters are considered fixed.36 When we
calculate the sample size for a frequentist comparison

Table 1 Evidence categories for the Bayes Factor in favor of the
alternative hypothesis (H1) over the null hypothesis (H0)28

Bayes Factor Interpretation

> 100 Extreme evidence for H1

30–100 Very strong evidence for H1

10–30 Strong evidence for H1

3–10 Moderate evidence for H1

1–3 Anecdotal evidence for H1

1 No evidence

0.33–1 Anecdotal evidence for H0

0.33–0.1 Moderate evidence for H0

0.1–0.03 Strong evidence for H0

0.03–0.01 Very strong evidence for H0

< 0.01 Extreme evidence for H0
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between means, we assume that the dm is exactly 0 for H0
and has an exact prespecified value for H1. The Bayesian
comparison between means, instead, assumes uncertainty
about those values. In the case of the H1 parameter, we
assign a range of possible values. The distribution of those
values is called the prior distribution.23,28,37 Common sorts
of prior distribution are normal distribution and t-distribu-
tion (►Figure 5).

A common mistake is considering the Bayesian param-
eters ‘random’, in opposition to the fixed point by the
frequentist.36 The parameter in the Bayesian model is not
randombut uncertain. Uncertainty in the Bayesianmethod is
usually misinterpreted as ‘randomness’.36

There are two different ways to choose the prior distribu-
tion in Bayesian analysis.27,28,38,39 The first is the subjective
way, which is based on the researcher’s beliefs about the
parameters. These beliefs are supported by previous theo-
retical information, and the prior distribution is therefore
called ‘informative’. The informative distribution describes a
specific range for the parameter with the more possible
values. The second is the objective way, not based on the
researcher’s beliefs, which yield a ‘non-informative’ distri-
bution. It is called objective because there is no bias toward
any specific value: the distribution displays a wide range of
values of the parameter because all of them are equally likely,

or almost equally likely, from the researcher’s point of view.
For instance, if weplan to compare the difference in themean
IPPS between a new alpha-blocker and placebo, and a previ-
ous meta-analysis describes a difference of 10 points, we can
set an ‘informative’ prior distribution centered on 10 and
with a narrow standard deviation. If there is no previous
information about the topic, we would have to set a ‘non-
informative’ prior with a wide range of values for the
difference in means (►Figure 5).

Different authors advocate non-informative priors, espe-
cially for scenarios in which there is no previous reliable
information about the research topic.28,40,41 In that sense,
‘default’ priors are recommended. ‘Default’ prior non-infor-
mative distributions are prior distributions with limited
preference for particular parameter values. They are recom-
mended because they increase the objectivity of the analyses
and facilitate communication, because they provide a stan-
dard reference to compare Bfs from different studies.42,43

The flat prior (uniform prior, with no biases towards any
parameter value) is a sort of non-informative distribution
not recommended because it leads to Bfs in favor of the H0
even if the data suggest a difference in favor of the H1.23,40,44

Therefore, non-informative priors adopted by researchers
span a wide range of parameter values but are not entirely
flat. The Cauchy distribution is the default prior for the t-test,
and it is similar to the Gaussian normal distribution but has
fatter tails and less central mass28,29,38,40,42 (►Figure 5).

It is important to emphasize two concepts. First, the prior
distribution must be specified before (not after) the data
collection.23,28,29,39,40 Once the researcher knows their
study’s data, the prior distribution’s construction is prone
to bias.29,39 However, redefining the prior distribution is
allowed during data obtention if additional information
becomes available.39 Second, the prior odds and the prior
distribution are not the same.28,41 The prior odds are the
researcher’s prior beliefs about the probability of H1 in
relation to H0. The prior distribution is a range of possible
values of the parameter in H1, assigned by the researcher.

H0 specification. In Bayesian analysis, the H0 is usually
described as a single fixed point equal to zero (no differences
between the groups).28,29,37,45 Conceptually, however, the
Bayesian method acknowledges that considering H0, the
population parameter is never exactly zero, but a value
near zero; therefore, the specification of the H0 can be an
interval around 0.29,37,46

Fig. 4 Likelihood profile curve for a dm. The x-axis is the unknown
parameter dm. We calculate how likely are different values of dm
given an observed dm¼ 10. The parameter value dm¼ 10 has the
highest likelihood. The parameter value dm¼ 5 has a low likelihood.

Fig. 5 Examples of prior distributions. The x-axis corresponds to the parameter values. The y-axis, the density, refers to how frequent is each
parameter value.

Revista Urología Colombiana / Colombian Urology Journal Vol. 31 No. 3/2022 © 2022. Sociedad Colombiana de Urología. All rights reserved.

Frequentist and Bayesian Hypothesis Testing Gaona et al. 135



The Posterior Distribution
The posterior distribution is the distribution of possible
values of the H1 parameter obtained after updating the prior
distribution based on the data.23,27,28,37,38,41,42 It combines
our beliefs before knowing the data (the prior distribution)
and the information provided by the data (the likelihood).28

In many cases, the information provided by the data can
reduce the uncertainty of the H1 parameter.

The posterior distribution is calculated by multiplying
the data likelihood by the prior distribution23,28,37,42

(►Figure 6). The range obtained is described by central
tendency measures such as mean, median, and mode.28

The dispersion around the central tendency measurement
is described with an interval that includes 95% of the
parameter values.28 The mentioned interval is called the
95% credible interval and means that we are 95% certain that
the actual parameter value falls in the interval assuming that
the alternative hypothesis is true (H1).41,42 Recall that the
probability of a true H1 is not expressed by the credible
interval nor the posterior distribution. As aforementioned,
the probability H1 versus H0 is given by the posterior odds.

Calculation of the Bayes Factor
As aforementioned, the Bf is the probability of the data, given
H1, divided by the probability of the data, given H0:

Bf¼p(data | H1)/p(data | H0).

The probability of the data given H0 refers to how likely
are the data given the parameter value of no differences (the
point null), that is to say, the height of the likelihood profile
curve for the point null.28,44,45

The probability of the data given H1 is a more complex
calculation because H1 prior distribution is not a point null,
but a range of values.27,28,29,44 In that sense, we need to
integrate the data likelihood to H1 prior distribution, which
is, in simple terms, multiplying (averaging) the prior distri-
bution by the data likelihood for each parameter value and

adding all the obtained values.28,47 The outcome is called H1
marginal likelihood.

The Bf calculation based on the H1 marginal likelihood
and point-null likelihood can be graphically illustrated (Au-
gust 9, 2015 posting by Alexander Etz to ‘Understanding
Bayes: Visualization of the Bayes Factor’ blog; unreferenced,
retrieved from https://alexanderetz.com/2015/08/09/un-
derstanding-bayes-visualization-of-bf). The parameter’s
continuous distribution is interpreted as a set of many points
spaced very close together. We calculate the likelihood ratio
for every point and multiply the likelihood ratio by the
respective H1 prior density. Then, we do the sum of all
calculations, and finally, we divide by the total number of
points (►Figure 7).

An alternative way to obtain the Bf is by dividing the
posterior distribution height by the prior distribution height
at the null point, with no calculation of the H1 marginal
likelihood28,45 (►Figure 8). The method corresponds to the
Savage–Dickey density ratio, and is suitable for nested
models.28,45,46,47,48 In hypothesis testing, we say that we
have nested models when we can obtain H0 by constraining
the parameters of H1;48 in other words, when H0 is a subset
of H1. That is the case for most Bayesian hypothesis testing
because the ‘point null’ of H0 can be obtained from H1 by
setting the parameter equal to 0.28

Bayesian hypothesis testing is also feasible for complex
models with many parameters or non-precise prior
distributions.28 If that is the case, we can apply computational
methods like theMarkov chainMonte Carlo (MCMC) to obtain
the posterior distributions over the parameters.37,48,49

Sensitivity Analysis
Themain challenge of Bayesian analysis is its dependence on
the prior distribution. As aforementioned, the Bf calculation
takes into consideration the H1 prior distribution, and the
latter is in some sense arbitrary. One way to prevent a
misleading Bf is to collect appropriate knowledge to set
the best informative prior, but that is not always possible.28

A second alternative is the so-called sensitive analysis, in
which we check how the Bf is affected by changes in the
width of the prior distribution.28,30,36 If the Bf does not fall
below certain limits despite different prior widths, we can
conclude that we have a reliable and trustworthy assess-
ment. If we obtain a Bf of 40 in our study, meaning strong
evidence in favor H1, for example, and then different width
values do not yield a Bf below 10, we are confident about the
robustness of our research outcome.

Stop Rule and Sample Size in Bayesian Hypothesis
Testing
The frequentist analysis specifies the sample size, and the
study cannot be finished until the planned number of
participants has been included. Bayesian methodology, in-
stead, does not specify a sample size, and the Bf can be
monitored as the data come in.29,41,50 Bayesian researchers
are allowed to stop the studywhenever theywant, especially
if the evidence is compelling.50 For example, some authors
plan to stop the research as soon as Bf � 10. Other ways to

Fig. 6 Calculation of the posterior distribution. The posterior distribution
(blue line) is obtained by themultiplication of the prior (dotted line) and the
data likelihood (yellow line). CI¼ credible interval.
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establish limits are deadlines for the recruitment process or
fixing a maximum number of participants per group (a
‘maximum sample size’, N).29,41

Example with JASP

JASP is a free statistical software program developed by
researchers from the University of Amsterdam. Its name is
an acronym for Jeffreys Awesome Statistics Package, refer-
ring to Sir Harold Jeffreys, who played a central role in

developing the Bayesian methodology. JASP can be easily
downloaded at https://jasp-stats.org/download/, and it
includes both frequentist and Bayesian tests. Different tuto-
rials are available online, and a guideline has been published
recently.34,40,41

Let us suppose a hypothetical new pharmacological treat-
ment for lower urinary tract symptoms, different from the
traditional alpha-blockers. Let us call this new product the
‘x-blocker’. There is biological plausibility from a physio-
pathological perspective, but we do not have previous re-
search regarding the product. Suppose we conduct a clinical
trial comparing the ‘x-blocker’ and placebo in benign pros-
tatic hyperplasia (BPH) patients in terms of the IPSS after four
weeks of treatment. These are the data, following a normal
distribution, including 60 patients per group:

‘X-blocker’ group, IPSS, 60 patients: 12,8,13,7,13,12,14,8,
11,10,5, 10,11,10,9,10,5,10,16,10,10,4,3,10,11,17,11,8,11,9,
9,12,12,14,12,12,8,8,13,13,9,13,7,7,9,8,7,9,7,14,14,6,6,11,6,
6,15,15,11,9. The mean is 10.0, and the standard deviation is
3.0.

Placebo group, IPSS, 60 patients : 13,10,6,12,11,12,14,9,
11,12,13,4,17,3,12,8,12,9,3,12,16,11,12,10,12,12,11,14,5,4,
19,11,13,15,15,11,8,7,14,2,11,13,13,10,10,13,16,16,17,18,
13,11,12,9,12,13,15,16,7,13. The mean is 11.3, and the stan-
dard deviation is 3.7.

We can set the hypothesis in terms of the Cohen d (d),
which is a way to express the effect size when we compare
means.40,41 Cohen d values indicate the difference between
the two groups in standard deviations. Values around 0.2 and
0.5 are considered small and medium effects respectively.
Vales � 0.8 are considered a large effect. For example, Cohen
d¼1.2 is a large effect and says that the groups compared
differ by 1.2 standard deviations. Cohen d¼0 means no
difference between the two groups. Therefore, H0 assumes
d¼0, and H1 assumes d 6¼ 0.

Fig. 8 Calculation of the Bf, the Savage–Dickey method. The Bf is the
ratio of the heights of the orange dots, which correspond to the
height at the null point of the prior and posterior distributions.

Fig. 7 Calculation of the Bayes Factor (Bf). a) The x-axis is the
parameter value (dm). The yellow curve is the likelihood profile curve,
and the dashed curve is the prior distribution. b) The parameter’s
continuous distribution can be thought of as a set of many point
hypotheses spaced very close together. c) We determine the likeli-
hood ratio (LR) for the different dm point values relative to the point
null (H0), and then we weight the LR on the prior distribution. The LR is
the ratio of the heights of the likelihood curve (yellow curve). For
instance, we calculate the LR for dm¼�10 relative to H0. The height is
0.1 for dm¼�10 and 0.5 for the point null, so LR¼ 0.1/0.5¼ 0.2. The
LR is multiplied by the density assigned to dm¼�10 in the prior
distribution to weight the LR based on the prior distribution. In the
example, the density in the prior distribution for dm¼�10 is 0.8, so
the weighted LR¼ 0.2 � 0.8¼ 0.16. A similar calculation must be done
for every single dm point hypotheses values of the x-axis. The Bf is
obtained by adding all the weighted LR and dividing by the total
number of points.
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To obtain the frequentist comparison, we first load the
data into JASP. Then, we select ‘T-test’ and click on ‘Classical
independent samples T-test’. In the options panel,we clickon
‘Student’ on the test option. Finally, we select our alternative
hypothesis option: if we do not have a directional prediction
about H0 versus H1, we choose ‘Group 1 6¼Group 2’.►Table 2

presents the results.
The p-value¼0.02 describes how rare is the result in a

population with no differences between the groups: only 2%
of hypothetical samples will have a similar or more extreme
outcome. Since the data are unlikely givenH0 and the p-value
is lower than 0.05, we reject the H0. Cohen d¼0.4 equates to
a small/medium effect. The 95% CI says that we are confident
that the population’s Cohen d value will fall within the
interval 0.04-0.75 because that will be the case in 95% of
samples if we redo the study many times. As aforemen-
tioned, the probability of H1 (the probability of a difference
between the groups in the population) is not specified by the
frequentist approach.

To perform the JASP Bayesian analysis, we go to ‘T-test’
and then to ‘Bayesian independent samples T-test’. In the
options panel, we choose the alternative hypothesis option,
‘Group 1 6¼Group 2’. In the ‘Bayes Factor’ option, we choose
‘BF10’ to obtain a Bf in favor of H1 over H0 (the program
offers the option ‘BF01’ if we prefer a Bf describing the
evidence in favor of H0 over H1). In the ‘Prior’ option, we
select the prior H1 distribution: since our example estab-
lishes a lack of solid background evidence about the ‘x-
blocker’, we choose the default ‘Cauchy’ distribution. The
default Cauchy is centered on zero with an interquartile
range r¼0.70, meaning we are 50% confident that the actual
effect size lies between Cohen d¼ -0.7 and Cohen d¼0.7. In
the ‘Plots’ option, we click on ‘Prior and posterior’ and ‘Bayes
factor robustness check’, and we obtain figures 9 and 10.

►Figure 9 features the main results of the Bayesian
analysis. The BF10 is 1.73, meaning H1 predicts the data
1.73 times better thanH0. The circle in red andwhite is called
‘the probability wheel’, and is a graphical representation of
the Bf. Themore evidence in favor of H1 (thehigher the Bf, for
example), the greater the red/white radius. The dashed line
curve represents the Cauchy prior distribution, and the solid
line curve represents the posterior distribution. Both curves
present densities for different Cohen d values. The grey dots
represent the height of the curves at the point null of no
effect, and their values are used to calculate de Bf with the
Savage–Dickey method, as aforementioned. The 95% CI
¼0.02-0.7 refers to the 95% credibility interval, meaning a

95% probability that the population’s Cohen d value falls in
the interval, with a median of 0.36, as long as the H1 is true.

From the data of our example, we might predict the
probability of H1. Suppose the researcher thinks the prior
odds of the H1 versus H0 are 60/40. Given the obtained
Bf¼1.73, the posterior odds of H1versus H0 are 60/40 �
1.73¼2.59. We turn the posterior odds into probability (p)

Fig. 9 Bayesian outcome of a hypothetical comparison of the mean
IPSS between two groups. The analysis was performed with the JASP
software.

Table 2 Frequentist outcome of a hypothetical comparison of the IPSS between two groups. Independent samples t-test (Student
t-test)

t p Cohen d 95% onfidence interval for the
Cohen d

Lower Upper

International Prostate
Symptom Score (IPSS)

2.21 0.029 0.404 0.042 0.765

Note: The analysis was performed with the JASP software.

Fig. 10 Sensitivity analysis or Bf robustness plot of a hypothetical
comparison of the mean IPSS between two groups. The analysis was
performed with the JASP software.
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applying the formula p¼ odds/1þ odds¼2.59/1þ2.59
¼0.72. The probability of a true H1 in our example is of 72%.

►Figure 10 displays a sensitivity analysis or Bayes factor
robustness check. As seen, Bf lies in the interval 1-3 despite
different Cauchy prior widths, meaning the Bf provides
anecdotal evidence for the null hypothesis relative to the
alternativehypothesis irrespective of the prior widths. The Bf
decreases as the width is wider, indicating data with low
robustness.

We can establish a parallel between the frequentist and
the Bayesian method based on the example. The frequentist
yields a dichotomous outcome accepting or rejecting H0: we
rejected the null because the p-value was lower than 0.05.
The probability of a real H1 cannot be determined. The
Bayesian, instead, accepts uncertainty about H1 versus H0,
and its prediction is continuous scales: the BF10 was 1.73,
indicating anecdotal evidence in favor of H1, and the poste-
rior probability of H1 was of 72%. The frequentist 95% CI says
that 95% of repeated samples will have a CI that contains the
population parameter, but we do not know if the obtained
95% CI (Cohen d: 0.04-0.76) corresponds to one of those
samples. The obtained Bayesian 95% credibility interval, in
turn, predicts that, in the case of a true H1, the population
parameter lies between Cohen d 0.02-0.7.

Conclusion

The presentmanuscript synthesizes themain concepts of the
frequentist and the Bayesian methodology. The frequentist
approach has been used for many decades and is still the
preferred method to analyze and report results despite its
limitations related to the simplistic acceptance or rejection
of the null hypothesis depending on the 0.05 p threshold,
with no consideration of the probability of H1. Bayesian
inference provides a compelling continuous measure of how
likely is H1 in terms of the Bf and the posterior odds, and
researchers should be encouraged to become familiar with
this technique. Hopefully, the implementation of friendly
tools like JASP will enable us to report Bayesian results more
frequently, alone or in combination whit the frequentist
conclusions.
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