Horm Metab Res 2003; 35(4): 222-227
DOI: 10.1055/s-2003-39478
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Suppression of Aquaporin Adipose Gene Expression by Isoproterenol, TNFα, and Dexamethasone

M.  Fasshauer 1 , J.  Klein 2 , U.  Lossner 1 , M.  Klier 1 , S.  Kralisch 1 , R.  Paschke 1
  • 1 University of Leipzig, Department of Internal Medicine III, Leipzig, Germany
  • 2 University of Lübeck, Department of Internal Medicine I, Lübeck, Germany
Further Information

Publication History

Received 4 June 2002

Accepted after Revision 19 December 2002

Publication Date:
02 June 2003 (online)

Abstract

Aquaporin adipose (AQPap) is a putative glycerol channel in adipocytes. It has recently been shown to be upregulated in insulin resistance stimulated by thiazolidinediones and inhibited by insulin. To further clarify regulation of AQPap gene expression, 3T3-L1 adipocytes were chronically treated with various hormones known to influence insulin sensitivity and adipocyte metabolism, and AQPap mRNA was measured by quantitative real-time reverse transcription-polymerase chain reaction. Interestingly, treatment of 3T3-Ll adipocytes with 10 µM isoproterenol, 10 ng/ml TNFα, and 100 nM dexamethasone for 16 h inhibited AQPap gene expression by 62 %, 60 %, and 39 %, respectively; angiotensin 2, growth hormone, and triiodothyronine did not have any effect. The inhibitory effects were dose-dependent with significant suppression detectable at concentrations as low as 1 nM isoproterenol, 1 ng/ml TNFα, and 10 nM dexamethasone. Furthermore, inhibition of AQPap gene expression could be almost completely reversed by pretreating 3T3-L1 adipocytes with the β-adrenoceptor antagonist propranolol. Moreover, stimulation of Gs-proteins with cholera toxin and adenylyl cyclase with forskolin and dibutyryl-cAMP dramatically downregulated AQPap mRNA. Taken together, our results suggest that AQPap is an adipocyte-expressed glycerol channel selectively regulated and profoundly downregulated by hormones implicated in the pathogenesis of insulin resistance and dyslipidemia.

References

  • 1 Kahn B B, Flier J S. Obesity and insulin resistance.  J Clin Invest. 2000;  106 473-481
  • 2 Fruhbeck G, Gomez-Ambrosi J, Muruzabal F J, Burrell M A. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation.  Am J Physiol Endocrinol Metab. 2001;  280 E827-E847
  • 3 Ibrahimi A, Sfeir Z, Magharaie H, Amri E Z, Grimaldi P, Abumrad N A. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport.  Proc Natl Acad Sci U S A. 1996;  93 2646-2651
  • 4 Schaffer J E, Lodish H F. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein.  Cell. 1994;  79 427-436
  • 5 Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk P D. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes.  Proc Natl Acad Sci U S A. 1985;  82 4-8
  • 6 Kishida K, Shimomura I, Kondo H, Kuriyama H, Makino Y, Nishizawa H, Maeda N, Matsuda M, Ouchi N, Kihara S, Kurachi Y, Funahashi T, Matsuzawa Y. Genomic structure and insulin-mediated repression of the aquaporin adipose (AQPap), adipose-specific glycerol channel.  J Biol Chem. 2001;  276 36 251-36 260
  • 7 Kishida K, Kuriyama H, Funahashi T, Shimomura I, Kihara S, Ouchi N, Nishida M, Nishizawa H, Matsuda M, Takahashi M, Hotta K, Nakamura T, Yamashita S, Tochino Y, Matsuzawa Y. Aquaporin adipose, a putative glycerol channel in adipocytes.  J Biol Chem. 2000;  275 20 896-20 902
  • 8 Kishida K, Shimomura I, Nishizawa H, Maeda N, Kuriyama H, Kondo H, Matsuda M, Nagaretani H, Ouchi N, Hotta K, Kihara S, Kadowaki T, Funahashi T, Matsuzawa Y. Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator- activated receptor gamma.  J Biol Chem. 2001;  276 48 572-48 579
  • 9 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Isoproterenol inhibits resistin gene expression through a G(S)-protein-coupled pathway in 3T3-L1 adipocytes.  FEBS Lett. 2001;  500 60-63
  • 10 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 2001;  288 1027-1031
  • 11 Sansom M S, Law R J. Membrane proteins: Aquaporins - channels without ions.  Curr Biol. 2001;  11 R71-R73
  • 12 Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T. Molecular cloning and expression of a member of the aquaporín family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells.  Proc Natl Acad Sci U S A. 1994;  91 6269-6273
  • 13 Ko S B, Uchida S, Naruse S, Kuwahara M, Ishibashi K, Marumo F, Hayakawa T, Sasaki S. Cloning and functional expression of rAOP9L a new member of aquaporin family from rat liver.  Biochem Mol Biol Int. 1999;  47 309-318
  • 14 Jansson P A, Larsson A, Smith U, Lonnroth P. Glycerol production in subcutaneous adipose tissue in lean and obese humans.  J Clin Invest. 1992;  89 1610-1617
  • 15 Puhakainen I, Koivisto V A, Yki-Jarvinen H. Lipolysis and gluconeogenesis from glycerol are increased in patients with noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1992;  75 789-794
  • 16 Nurjhan N, Consoli A, Gerich J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus.  J Clin Invest. 1992;  89 169-175
  • 17 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 2002;  290 1084-1089
  • 18 Landsberg L. Role of the sympathetic adrenal system in the pathogenesis of the insulin resistance syndrome.  Ann N Y Acad Sci. 1999;  892 84-90; 84 - 90
  • 19 Reaven G M, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities - the role of insulin resistance and the sympathoadrenal system.  N Engl J Med. 1996;  334 374-381
  • 20 Hoieggen A, Possum E, Nesbitt S D, Palmieri V, Kjeldsen S E. Blood viscosity, plasma adrenaline and fasting insulin in hypertensive patients with left ventricular hypertrophy. ICARUS, a LIFE Substudy. Insulin CARotids US Scandinavica.  Blood Press. 2000;  9 83-90
  • 21 Facchini F S, Stoohs R A, Reaven G M. Enhanced sympathetic nervous system activity. The linchpin between insulin resistance, hyperinsulinemia, and heart rate.  Am J Hypertens. 1996;  9 1013-1017
  • 22 Maison P, Byrne C D, Hales C N, Wareham N J. Hypertension and its treatment influence changes in fasting nonesterifíed fatty acid concentrations: a link between the sympathetic nervous and the metabolic syndrome?.  Metabolism. 2000;  49 81-87
  • 23 Lawrence V J, Coppack S W. The endocrine function of the fat cell-regulation by the sympathetic nervous system.  Horm Metab Res. 2000;  32 453-467
  • 24 Bluher M, Windgassen M, Paschke R. Improvement of insulin sensitivity after adrenalectomy in patients with pheochromocytoma.  Diabetes Care. 2000;  23 1591-1592
  • 25 Bluher M, Kratzsch J, Paschke R. Plasma levels of tumor necrosis factor-alpha, angiotensin II, growth hormone, and IGF-I are not elevated in insulin-resistant obese individuals with impaired glucose tolerance.  Diabetes Care. 2001;  24 328-334
  • 26 Klein J, Fasshauer M, Ito M, Lowell B B, Benito M, Kahn C R. beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes.  J Biol Chem. 1999;  274 34 795-34 802
  • 27 Klein J, Fasshauer M, Benito M, Kahn C R. Insulin and the beta3-adrenoceptor differentially regulate uncoupling protein-1 expression.  Mol Endocrinol. 2000;  14 764-773
  • 28 Collins S, Surwit R S. The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis.  Recent Prog Horm Res. 2001;  56 309-328
  • 29 Rahn L T, Mei J, Karlsson M, Manganiello V, Degerman E. Down-regulation of cyclic-nucleotide phosphodiesterase 3B in 3T3-L1 adipocytes induced by tumour necrosis factor alpha and cAMP.  Biochem J. 2000;  346 Pt 2 337-343
  • 30 Andrews R C, Walker B R. Glucocorticoids and insulin resistance: old hormones, new targets.  Clin Sci (Colch ). 1999;  96 513-523
  • 31 Grasa M M, Cabot C, Fernandez-Lopez J A, Remesar X, Alemany M. Modulation of corticosterone availability to white adipose tissue of lean and obese Zucker rats by cortico steroid-binding globulin.  Horm Metab Res. 2001;  33 407-411
  • 32 Fickova M, Zorad S, Macho L. The effect of in vivo thyroxine treatment on insulin receptors, glucose transport and GLUT4 in rat adipocytes.  Horm Metab Res. 1997;  29 16-19
  • 33 Folli F, Kahn C R, Hansen H, Bouchie J L, Feener E P. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk.  J Clin Invest. 1997;  100 2158-2169
  • 34 Takano A, Haruta T, Iwata M, Usui I, Uno T, Kawahara I, Ueno E, Sasaoka T, Kobayashi M. Growth hormone induces cellular insulin resistance by uncoupling phosphatidylinositol 3-kinase and its downstream signals in 3t3-11 adipocytes.  Diabetes. 2001;  50 1891-1900
  • 35 Fasshauer M, Klein J, Kriauciunas K M, Ueki K, Benito M, Kahn C R. Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes.  Mol Cell Biol. 2001;  21 319-329
  • 36 Fasshauer M, Klein J, Ueki K, Kriauciunas K M, Benito M, White M F, Kahn C R. Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes.  J Biol Chem. 2000;  275 25 494-25 501

Prof. Dr. R. Paschke

Ph.-Rosenthal-Str.27 · 04103 Leipzig · Germany ·

Phone: +49 (34) 9713200

Fax: +49 (341) 9713209

Email: pasr@medizin.uni-leipzig.de