Rofo 2004; 176(8): 1114-1121
DOI: 10.1055/s-2004-813194
Neuroradiologie

© Georg Thieme Verlag KG Stuttgart · New York

Metabolische Bildgebung zur Verlaufskontrolle stereotaktisch bestrahlter Gliome - Wertigkeit der 1H-MR-Spektroskopie im Vergleich zur FDG-PET und IMT-SPECT

Metabolic Imaging to Follow Stereotactic Radiation of Gliomas - the Role of 1H MR Spectroscopy in Comparison to FDG-PET and IMT-SPECTM. P. Lichy1, 4 , M. Henze3 , C. Plathow1 , P. Bachert2 , H. U. Kauczor1 , H. P. Schlemmer1, 4
  • 1Abteilung Radiologie, Deutsches Krebsforschungszentrum Heidelberg
  • 2Medizinische Physik in der Radiologie, Deutsches Krebsforschungszentrum Heidelberg
  • 3Klinische Kooperationseinheit Nuklearmedizin, Deutsches Krebsforschungszentrum Heidelberg, und Abteilung Nuklearmedizin, Universitätsklinikum Heidelberg
  • 4Aktuell: Radiologische Klinik, Abteilung für Radiologische Diagnostik, Universitätsklinikum Tübingen
Further Information

Publication History

Publication Date:
02 August 2004 (online)

Zusammenfassung

Fragestellung: Bestimmung der klinischen Wertigkeit der 1H-MR-Spektroskopie (1H-MRSI) in der Nachsorge bestrahlter Gliome im Vergleich zur FDG-PET und IMT-SPECT. Patienten und Methoden: 24 Patienten mit bestrahlten Gliomen wurden untersucht (2-D-MR spektroskopische Bildgebung; PRESS; TE = 135 ms; 1,5T Magnetom Vision, Siemens; Voxelgröße 9 × 9 × 15 mm3). MR-Spektren (insgesamt n = 233) in tumorverdächtigen Arealen (n = 86) sowie in normalem Hirnparenchym (n = 147) wurden ausgewertet. Relative Signalintensitäten von Cholin (Cho), Creatin (Cr) und N-Acetyl-Aspartat (NAA) wurden berechnet. In n = 18 Fällen wurden FDG-PET- und in n = 14 IMT-SPECT-Untersuchungen durchgeführt sowie semiquantitativ ausgewertet. Basierend auf klinischen und MRT-Verlaufskontrollen wurden die Läsionen als neoplastisch (PT) oder nichtneoplastisch (nPT) eingestuft. Ergebnisse: Richtig positive Ergebnisse für die Diagnose von PT/nPT wurden in 88/89 % (1H-MRSI), 73/100 % (PET) und 100/75 % (SPECT) der Fälle gefunden. Cho/Cr und Cho/NAA zeigten hochsignifikante Veränderungen und konnten zwischen PT und nPT trennen. Eine Korrelation der relativen Signalintensitäten mit der FDG- und IMT-Aufnahme war aufgrund der Lokalisationen der maximalen Traceranreicherungen und Signalintensitäten nur schwer möglich. Schlussfolgerung: IMT-SPECT ist bei bestrahlten Gliomen zur Detektion eines Progresses am besten geeignet. FDG-PET ist eine sensitive Nachweismethode für höhergradige Tumoren bei gleichzeitig hoher räumlicher Auflösung. Die 1H-MRSI kann mit ihrer guten Sensitivität und Spezifität leicht in die MRT-Untersuchung integriert werden.

Abstract

Purpose: To evaluate the clinical value of 1H MR spectroscopy (1H MRSI) for follow-up of irradiated glioma compared to positron emission tomography (PET) with [18F]-2-fluoro-deoxy-D-glucose (FDG-PET) and single photon emission tomography with [123I]-a-methyl-L-tyrosine (IMT-SPECT). Materials and Methods: Twenty-four patients with irradiated gliomas were examined using 1H MRSI (2D spectroscopic imaging; PRESS; TE = 135 msec; 1.5T Magnetom Vision, Siemens; Voxel size 9 × 9 × 15 mm3). MR spectra (n = 233) were evaluated in areas suspicious of tumor (n = 86) as well as in healthy appearing brain tissue (n = 147). Relative signal intensity ratios of choline (Cho), creatine (Cr) and N-acetyl-aspartate (NAA) were calculated. PET scans (n = 19) were performed with 200 - 250 MBq FDG, IMT-SPECT examinations (n = 14) with 200 - 250 mBq IMT. Based on clinical and MRI/CT, follow-up lesions were classified as either neoplastic [PT] or non-neoplastic [nPT]. Results: True positive results for the diagnosis of PT/nPT were 88/89 % (1H MRSI), 73/100 % (PET) and 100/75 % (SPECT). Cho/Cr showed highly significant changes for PT. Determinating a correlation between Cho, Cr, NAA and IMT-SPECT as well as FDG-PET was not possible because of different location of maximum tracer uptake and acquired 2D 1H MRSI. Conclusion: IMT-SPECT seems to be superior to detect tumor progression in irradiated gliomas. 1H MRSI was more suitable than FDG-PET to differentiate between recurrence and radiation-induced changes. FDG-PET plays a role as sensitive method for detecting high-grade tumors. PET and SPECT allowed the examination of the entire tumor including surrounding brain tissue with higher spatial resolution than the acquired 2D 1H MRSI. A main limitation of our study was that only 2D 1H MRSI was used, with only parts of the tumor evaluated. The use of 3D MR spectroscopic imaging may further increase the diagnostic accuracy.

Literatur

  • 1 Herfarth K K, Gutwein S, Debus J. Postoperative Radiotherapy of Astrocytomas.  Semin Surg Oncol. 2001;  20 13-23
  • 2 Plathow C, Schulz-Ertner D, Thilman C. et al . Fractionated stereotactic radiotherapy in low-grade astrocytomas: Long-term outcome and prognostic factors.  Int J Radiat Oncol Biol Phys. 2003;  57 996-1003
  • 3 Friedman H S, Kerby T, Calvert H. Temozolamide and treatment of malignant glioma.  Clin Cancer Res. 2000;  6 2585-2597
  • 4 Kondziolka D, Lunsford L D, Martinez A J. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma.  J Neurosurg. 1993;  70 533-536
  • 5 Schlemmer H P, Bachert P, Herfarth K K. et al . Evaluation of suspicious brain lesions after stereotactic radiotherapy of brain tumors using proton MR spectroscopy.  AJNR Am J Neuroradiol. 2001;  22 1316-1324
  • 6 Traber F, Block W, Flacke S. et al . 1H-MR Spectroscopy of brain tumors in the course of radiation therapy: Use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence.  Fortschr Röntgenstr. 2002;  174 33-42
  • 7 Langleben D D, Segall D M. PET in differentiation of recurrent brain tumor from radiation injury.  J Nucl Med. 2000;  41 1861-1867
  • 8 Jager P L, Vaalburg W, Pruim J. et al . Radiolabeled amino acids: basic aspects and clinical applications in oncology.  J Nucl Med. 2001;  42 432-445
  • 9 Rigo P, Paulus P, Kaschten B. et al . Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose.  Eur J Nucl Med. 1996;  23 1641
  • 10 Langen K J, Roosen N, Coenen H. et al . Brain and brain tumor uptake of L-3-[123-I] Iodo-Alpha-methyl tyrosine: Competition with natural L-amino acids.  J Nucl Med. 1991;  32 1225-1228
  • 11 Kernohan J W; Mabon RF, Svien H J. A simplified classification of gliomas.  Proc. Staff Meet Mayo Clin. 1949;  24 71-75
  • 12 Zulch K L. Histologic typing of the central nervous system. International histologic classification of tumors, no. 21 Geneva, Switzerland; World Health Organization 1979
  • 13 Van Kampen M, Schultz-Ertner D, Engenhart-Cabillic R. et al . Low-grade astrocytoma: treatment with conventionally fractionated steretactic radiation therapy.  Radiology. 1996;  201 275-278
  • 14 Schulz-Ertner D, Debus J, Lohr F. et al . Fractionated stereotactic conformal radiation therapy of brain stem gliomas: outcome and prognostic factors.  Radioth Oncol. 2000;  57 215-223
  • 15 Shaw E, Arusell R, Scheithauer B. et al . Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: Initial report of a northern central cancer treatment group/radiation therapy oncology group/eastern cooperative oncology group study.  J Clin Oncol. 2002;  20 2267-2276
  • 16 Schuff N, Ezekiel F, Gamst A C. et al . Region and Tissue Differences of Metabolites in Normally Aged Brain Using Multislice 1H Magnetic Resonance Spectroscopic Imaging.  Magn Reson Med. 2001;  45 899-907
  • 17 Soher B J, Young K, Govindaraju V. et al . Automated spectral analysis III: Application to in vivo proton MR spectroscopy and spectroscopic imaging.  Magn Reson Med. 1998;  40 822-831
  • 18 Plathow C, Lichy M P, Bachert P. et al . The role of MRI in patients with astrocytoma WHO II treated with fractionated stereotactic radiotherapy.  Eur Radiol. 2004;  14 679-685
  • 19 Ginsberg L E, Fuller G N, Hashmi M. et al . The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series.  Surg-Neurol. 1998;  49 436-440
  • 20 Nelson S J, Vigneron D B, Dillon W P. Serial Evaluation of Patients with Brain Tumors using Volume MRI and 3D 1H MRSI.  NMR Biomed. 1999;  12 123-138
  • 21 Ricci P E, Karis J P, Heiseman J E. et al . Differentiating recurrent tumor from radiation necrosis: Time for Re-evaluation of Positron Emission Tomography?.  AJNR Am J Neuroradiol. 1998;  19 407-413
  • 22 Goldman S. Regional glucose metabolism and histopathology of gliomas. A study based on PET-guided stereotactic biopsy.   Cancer. 1996;  78 1098-1106
  • 23 Delbeke D, Meyerowitz C, Lapidus R L. et al . Optimal cut-off levels of F-18-FDG uptake in the differentiation of low-grade from high-grade brain tumors with PET.  Radiology. 1995;  195 47-52
  • 24 De Witte O, Levivier M, Violon P. et al . Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma.  Neurosurgery. 1996;  39 470-476
  • 25 Langen K J, Ziemons K, Kiwit J C. et al . 3-[123I]iodo-alpha-methyltyrosine and [methyl-11C]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET.  J Nucl Med. 1997;  38 517-522
  • 26 Henze M, Mohammed A, Mier W. et al . Pretreatment Evaluation of the Hypopharynx and Larynx Carcinoma with 18F-fluorodeoxyglucose, 123I-Alpha-methyl-tyrosine and 99 mTc-hexakis-2-methoxyisobutylisonitrile.  Eur J Nucl Med. 2002;  29 324-330
  • 27 Henze M, Mohammed A, Schlemmer H. et al . Detection of tumor progression in the follow-up of irradiated low grade gliomas: Comparison of 123I-Alpha-Methyl-L-Tyrosine- and 99 mTc-Sestamibi SPECT.  Eur J Nucl Med. 2002;  29 1455-1461
  • 28 Henze M, Mohammed A, Schlemmer H P. et al . PET and SPECT for detection of tumor progression in irradiated low-grade astrocytomas: An ROC analysis.  J Nucl Med. (in press); 

Dr. med. Matthias Philipp Lichy

Universitätsklinikum Tübingen, Sektion für Experimentelle Radiologie, Abteilung für Radiologische Diagnostik

Hoppe-Seyler-Straße 3

72076 Tübingen

Phone: ++ 49/70 71/29-8 05 46

Email: matthias.lichy@med.uni-tuebingen.de