Synlett 2005(4): 658-660  
DOI: 10.1055/s-2005-863714
LETTER
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Cross-Coupling of Diphenylphosphine with Vinyl Bromides and Chlorides as a Route to Diphenylvinylphosphines

Mstilsav O. Shulyupin, Evgeniy A. Chirkov, Marina A. Kazankova*, Irina P. Beletskaya
Department of Chemistry, Moscow State University (MSU), Leninskie Gory 1, Building 3, 119992 Moscow, Russia
Fax: +7(095)9328846; e-Mail: kazank@org.chem.msu.ru;
Further Information

Publication History

Received 15 December 2004
Publication Date:
22 February 2005 (online)

Abstract

An efficient nickel-catalyzed reaction for the phosphination of vinyl bromides and chlorides was developed. The procedure uses a combination of up to 1 mol% of nickel acetylacetonate, triethylamine and dimethylformamide as a solvent. The double bond geometry of the vinyl halides was retained under the reaction conditions.

    References

  • 1 The Chemistry of Organophosphorus Compounds   Vol. 1:  Hartley FR. Wiley; Chichester, UK: 1990.  p.191 
  • 2a Edge M. Faulds P. Kelly DG. McMahon A. Ranger GC. Turner D. Eur. Pol. J.  2001,  37:  349 
  • 2b Maraval V. Laurent R. Donnadieu B. Mauzac M. Caminade A.-M. Majoral J.-P. J. Am. Chem. Soc.  2000,  122:  2499 
  • Some recent references:
  • 3a Tunik SP. Koshevoy IO. Poe AJ. Norlander E. Haukka M. Pakkanen TA. J. Chem. Soc., Dalton Trans.  2003,  2457 
  • 3b Grachova EV. Haukka M. Heaton BT. Nordlander E. Pakkanen TA. Podkorytov IS. Tunik SP. J. Chem. Soc., Dalton Trans.  2003,  2468 
  • 3c Maitra K. Nelson JH. Polyhedron  1998,  18:  203 
  • 3d Barthel-Rosa LP. Maitra K. Fischer J. Nelson JH. Organometallics  1997,  16:  1714 
  • For reviews, see:
  • 4a Beletskaya IP. Kazankova MA. Russ. J. Org. Chem.  2002,  38:  1391 
  • 4b Tanaka M. Top. Curr. Chem.  2004,  232:  25 
  • 4c Some recent papers: Takaki M. Koshoji G. Komeyama K. Takeda M. Shishido T. Kitani A. Takehira K. J. Org. Chem.  2003,  68:  6554 
  • 4d See also: Mimeau D. Gaumont A. J. Org. Chem.  2003,  68:  7016 
  • 4e Jerome F. Monnier F. Lawicka H. Derien S. Dixneuf PH. Chem. Commun.  2003,  696 
  • 5a The Chemistry of Organophosphorus Compounds   Vol. 1:  Hartley FR. Wiley; Chichester, UK: 1990.  p.309-401  
  • 5b The Chemistry of Organophosphorus Compounds   Vol. 1:  Hartley FR. Wiley; Chichester, UK: 1990.  p.496-499  
  • 6a Colquhoun IJ. McFarlane W. J. Chem. Soc., Dalton Trans.  1982,  1915 
  • 6b Bookham JL. McFarlane W. Polyhedron  1988,  7:  239 
  • For reviews see ref.4a and:
  • 7a Schwan AL. Chem. Soc. Rev.  2004,  33:  218 
  • 7b Some recent papers: Gelman D. Jiang L. Buchwald SL. Org. Lett.  2003,  5:  2315 
  • 7c Allen DV. Venkataraman D. J. Org. Chem.  2003,  68:  4590 
  • 7d Moncarz JR. Brunker TJ. Jewett JC. Orchowski M. Glueck DS. Sommer RD. Lam K.-C. Incarvito CD. Concolino TE. Ceccarelli C. Zakharov LN. Rheingold AL. Organometallics  2003,  22:  3205 
  • 7e Murata M. Buchwald SL. Tetrahedron  2004,  60:  7397 
  • 8 Gilbertson SR. Fu Z. Starkey GW. Tetrahedron Lett.  1999,  40:  8509 
  • 9 See ref. 7b and: Trostyanskaya IG. Titskiy DY. Anufrieva EA. Borisenko AA. Kazankova MA. Beletskaya IP. Russ. Chem. Bull.  2001,  50:  2095 
  • 10 Kazankova MA. Chirkov EA. Kochetkov AN. Efimova IV. Beletskaya IP. Tetrahedron Lett.  1999,  40:  573 
  • 11 There was a report that secondary phosphines were successfully used as ligands for the Heck reaction. See: Schnyder A., Aemmer T., Indolese A. F., Pittelkow U., Studer M.; Adv. Synth. Catal.; 2002, 244: 495
  • Some recent articles:
  • 12a Vila JM. Lopez-Torres M. Fernandez A. Pereira MT. Ortigueira JM. Fernandez JJ. Inorg. Chim. Acta  2003,  342:  185 
  • 12b Mosteiro R. Fernandez A. Lopez-Torres M. Vazquez-Garcia D. Suarez A. Fernandez JJ. Vila JM. New J. Chem.  2002,  26:  1425 
  • 12c Higgins SJ. La Pensee A. Stuart CA. Charnock JM. J. Chem. Soc., Dalton Trans.  2001,  902 
  • 12d Goli MB. Grim SO. Tetrahedron Lett.  1991,  32:  363 ; and references therein
  • 13a Izod K. McFarlane W. Tyson BV. Clegg W. Harrington RW. Liddle ST. Organometallics  2003,  22:  3684 
  • 13b Clegg W. Izod K. McFarlane W. O’Shaughnessy P. Organometallics  1998,  17:  5231 
  • 14a Mohr F. Eisler DJ. McArdle CP. Atieh K. Jennings MC. Puddephatt RJ. J. Organomet. Chem.  2003,  670:  27 
  • 14b Hunks WJ. Lapierre J. Jenkins HA. Puddephatt RJ. J. Chem. Soc., Dalton Trans.  2002,  2885 
  • 14c McArdle CP. Van S. Jennings MC. Puddephatt RJ. J. Am. Chem. Soc.  2002,  124:  3959 
  • 14d McArdle CP. Irwin MJ. Jennings MC. Vittal JJ. Puddephatt RJ. Chem.-Eur. J.  2002,  8:  723 
  • Some recent articles:
  • 15a Chen J.-L. Zhang L.-Y. Chen Z.-N. Gao L.-B. Abe M. Sasaki Y. Inorg. Chem.  2004,  43:  1481 
  • 15b Ares R. Lopez-Torres M. Fernandez A. Pereira MaT. Alberdi G. Vazquez-Garcia D. Fernandez JJ. Vila JM. J. Organomet. Chem.  2003,  665:  76 
  • 15c Ares R. Lopez-Torres M. Fernandez A. Castro-Juiz S. Suarez A. Alberdi G. Fernandez JJ. Vila JM. Polyhedron  2002,  21:  2309 
  • 16 Brown JM. Lucy AR. J. Organomet. Chem.  1986,  314:  241 
17

General Procedure (for Compounds 1-5).
A Schlenk flask was charged with 5 mmol of alkenyl bromide, 5 mmol of Et3N, 5 mmol of diphenylphosphine, 5 mL of DMF and 1 mol% of Ni(acac)2. The reaction mixture was stirred for specified period at maintained temperature (Table [2] ). To this mixture 20 mL of H2O and 20 mL of benzene were added after cooling. The benzene phase was separated, washed with 10 mL of H2O, and dried under MgSO4. Then, 20 mg of dimethylglyoxime were added to the benzene solution. After 1 h the solution was passed through short layer of silica gel and evaporated in vacuum. The crude product was then distilled under reduced pressure.
E -(2-Ethoxyvinyl)diphenylphosphine ( 1): yield 90%, colorless oil, bp 120-124 °C/4 Torr. 1H NMR (400 MHz, CDCl3): δ = 1.25-1.28 (t, 3 ), 3.82-3.88 (q, 2 ), 5.32-5.35 (d, 1 , J HH = 14 Hz), 6.86-6.92 (dd, 1 , J HH = 14 Hz, J PH = 9 Hz), 7.21-7.40 (m, 10 ). 13C NMR (100.6 MHz, CDCl3): δ = 14.51 (-H3), 65.24 (-O-CH2), 97.63, 128.01, 128.21, 132.20, 159. 31P{H} NMR (162.6 MHz, CDCl3): δ = -18.0. Anal. Calcd for C 16H17OP (%): C, 74.99; H, 6.69. Found: C, 75.02; H, 6.52.
Z -(1-Methylpropenyl)diphenylphosphine ( 2): yield 90%, colorless oil, bp 110 °C/3 Torr. 1H NMR (400 MHz, CDCl3): δ = 1.72 (dt, 3 H, =(P)CH3, J PH = 1.0 Hz, J HH = 7.4 Hz), 1.77 (d, 3 H, =(P)CH3, J PH = 6.7 Hz), 5.95 (m, -H), 7.32 (m, 10 H, C6H5). 13C NMR (100.6 MHz, CDCl3): δ = 137.09 (d, =C-P, J P = 32.1 Hz), 133.22 (d, C=C-P, J P = 19.8 Hz), 136.51 (d, J P = 10.7 Hz, ipso), 128.65 (m, 6H5), 15.00 (d, CH3-C=C-P, J P = 15.2 Hz), 15.00 [d, C=C(PPh2)CH3, J P = 39.6 Hz]. 31P{H} NMR (162.6 MHz, CDCl3): δ = 5.9. Anal. Calcd for C16H17P (%): C, 79.98; H, 7.13; P, 12.89. Found: C, 79.35; H, 6.96; P, 12.83.
General Procedure (for Compounds 6, 8, 9).
A Schlenk flask was charged with 2.5 mmol of alkenyl chloride, 8 mmol of Et3N, 2 mmol of diphenylphosphine, 3 mL of DMF, and 2 mol% of Ni(PPh3)2Cl2. The solution was stirred for specified period at maintained temperature. To this solution 20 mL of H2O and 20 mL of benzene were added after cooling. The benzene phase was separated, washed with 10 mL of H2O and dried under MgSO4. Then, 20 mg of dimethylglyoxime were added to benzene solution and after 1 h the solution was passed through short layer of silica gel and evaporated in vacuum. The crude product was then purified by column chromatography (Al2O3, THF).
1,1-Bis(diphenylphosphino)-2-( p -methoxyphenyl)ethane ( 8): yield 93%, mp 127 °C. 1H NMR (400 MHz, CDCl3): δ = 3.68 (s, 3 ), 6.74 (d, 1 H), 7.03-7.39 (m, 25 ). 13C NMR (100.6 MHz, CDCl3): δ = 55.10 (d, O-CH3, J = 9.0 Hz), 113.25 (d, J = 4.5 Hz), 127.68, 128.27 (dd), 130.0 (t), 131.29 (t), 132.39 [dd, Ph2P-C(PPh2)=C, J = 33.6 Hz, J = 48.8 Hz], 133.83 (d, J = 21.4 Hz), 134.27 (d, J = 19.8 Hz), 135.84 (dd, J = 6.1 Hz, J = 9.2 Hz), 136.47 (d, J = 15.0 Hz), 152.79 (dd, J = 9.0 Hz, J = 23.0 Hz), 159.48. 31P{H} NMR (162.6 MHz, CDCl3): δ = -3.8 (d, J = 1.5 Hz), -12.0 (d, J = 1.5 Hz). Anal. Calcd for C 33H28P2O (%): C, 78.80; H, 5.62. Found: C, 77.49; H, 5.79.