Subscribe to RSS
DOI: 10.1055/s-2005-872520
© Georg Thieme Verlag Stuttgart · New York
Ex vivo Expansion of Highly Purified NK Cells for Immunotherapy after Haploidentical Stem Cell Transplantation in Children
Ex-vivo-Expansion hochaufgereinigter NK-Zellen zur Immuntherapie nach haploidenter Stammzelltransplantation bei KindernPublication History
Publication Date:
24 November 2005 (online)
Abstract
Background: Allogeneic natural killer (NK) cells are known to show medium to high cytotoxic activity against HLA-nonidentical leukemia or tumor cells. For a possible benefit of postransplant treatment with NK cells after haploidentical stem cell transplantation (haplo-SCT) we developed a clinical scale procedure for NK cell processing observing Good Manufacturing Practice (GMP). Methods: Allogeneic donor NK cells were selected from 15 unstimulated leukaphereses using two rounds of immunomagnetic T cell depletion, followed by an NK cell enrichment step. CD56+CD3- NK cells were stimulated and expanded in vitro according to GMP. Quality control of NK cell purity, residual T cells and cytotoxic activity was done by multi-coloured flowcytometric analyses. Results: Purification led to an absolute number of 234-1 237 × 106 CD56+CD3- NK cells from leukapheresis harvests with a median purity of 95 % and a 4 to 6œ log depletion of T cells. After two weeks stimulation with IL-2 a five-fold expansion of NK cells with a T cell contamination below 0.1 % was reached. Median cell viability was 95 % after purification and 99 % after expansion. The IL-2 stimulated NK cells showed a highly increased lytic activity against the MHC-I deficient K562 cells compared to freshly isolated NK cells and a medium cytotoxicity against patients' leukemic cells. Conclusions: Clinical scale enrichment and activation of allogeneic donor NK cells is feasible. High dose NK cell application may be a new treatment option for pediatric patients with leukemia or solid tumors in case of minimal residual disease or inbalanced chimerism post haplo-SCT as we could show for the first three patients [12].
Zusammenfassung
Hintergrund: Allogene Natürliche Killerzellen (NK) zeigen eine mittlere bis hohe zytotoxische Aktivität gegenüber HLA-nicht-identen Leukämie- und Tumorzellen. Um diesen Effekt für eine Immuntherapie mit NK-Zellen nach haploidenter Stammzelltransplantation (haplo-SZT) immuntherapeutisch zu nutzen, haben wir ein Verfahren zur Aufreinigung von NK-Zellen unter Good Manufacturing Practice (GMP) im klinischen Maßstab entwickelt. Methode: NK-Zellen allogener Spender wurden aus 15 unstimulierten Leukapheresen durch einen doppelten immunomagnetischen T-Zell-Depletionsschritt mit anschließender NK-Selektion gewonnen. Danach erfolgte die Stimulierung und Expansion der CD56+CD3- NK-Zellen in vitro unter GMP. Als Qualitätskontrolle wurde die Reinheit der NK-Zellen, der Gehalt residualer T-Zellen und die Zytotoxizität mittels multiparametrischer Durchflusszytometrie bestimmt. Ergebnisse: Durch die Aufreinigung konnte eine Absolutzellzahl von 234-1 237 × 106 CD56+CD3- NK-Zellen mit einer medianen Reinheit von 95 % und einer T-Zell-Depletion von 4 bis 6œ log-Stufen erreicht werden. Nach 14-tägiger Stimulierung mit IL-2 expandierten die NK-Zellen um das Fünffache mit einer T-Zell Kontamination unter 0,1 %. Die mediane Zellvitalität lag bei 95 % nach Selektion und bei 99 % nach Expansion. Die stimulierten NK-Zellen zeigten eine hohe Zytotoxizität gegenüber der MHC-I-defizienten K562-Zelllinie im Vergleich zu frisch isolierten NK-Zellen und eine mittlere Zytotoxizität gegenüber malignen Leukämiezellen von Patienten. Schlussfolgerung: Wir konnten zeigen, dass die Aufreinigung und Aktivierung von NK-Zellen allogener Spender im klinischen Maßstab möglich ist. Die Applikation einer großen Anzahl NK-Zellen bietet die Basis für ein neues Behandlungskonzept für pädiatrische Patienten mit Leukämien und soliden Tumoren bei minimaler Resterkrankung oder fallendem Spenderchimärismus nach haplo-SZT, was wir vorerst für 3 Patienten zeigen konnten [12].
Key words
NK cells - haploidentical stem cell transplantation - CD56 selection - CD3 depletion
Schlüsselwörter
NK-Zellen - haploidente Stammzelltransplantation - CD56-Selektion - CD3 Depletion
References
- 1 Collins R H, Spilberg O J, Drobyski W R. Donor lymphocyte infusion in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997; 15 433-444
- 2 Cooper M A, Fehninger T A, Turner S C, Chen K S, Ghaheri B A, Ghayur T, Carson W E, Caligiuri M A. Human natural killer cells: A unique innate immunoregulatory role for the CD56bright subset. Blood. 2001; 97 3146-3151
- 3 Farag S S, Fehninger T A, Ruggeri L, Velardi A, Calgiuri M A. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 2002; 100 1935-1947
- 4 Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G, Maccario R, Bonetti F, Wojnar J, Martinetti M, Frassoni F, Georgiani G, Bacigalupo A, Holowiecki J. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003; 102 814-819
- 5 Gong J, Maki G, Klingemann H G. Characterization of a human cell line NK-92 with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994; 8 652-658
- 6 Grityppis A D, Dimitropoulos D, Paraskevas E. Large-scale expansion of CD3+CD56+ lymphocytes capable of lysing autologous tumor cells with cytokine-enriched supernatant. Cancer Immunol Immunther. 2002; 51 440-448
- 7 Guven H, Gilljam M, Chambers B J, Ljunggren H G, Christensson B, Kimby E, Dilber M S. Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL): a potential source for cellular immunotherapy. Leukemia. 2003; 17 1973-1980
- 8 Igarashi T, Wynberg J, Srinivasan R, Becknell B, McCoy J P, Takahashi Y, Suffredini D A, Linehan W M, Caligiuri M A, Childs R W. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood. 2004; 104 170-177
- 9 Iyengar R, Handgretinger R, Babarin-Dorner A, Otto M, Geiger T, Holladay M, Houston J. Purification of human natural killer cells using a clinical-scale immunomagnetic method. Cytotherapy. 2004; 6 15-22
- 10 Klingebiel T, Handgretinger R, Lang P, Bader P, Niethammer D. Haploidentical transplantation for acute lymphoblastic leukemia in childhood. Blood Reviews. 2004; 18 181-192
- 11 Klingemann K G, Martinson J. Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy. 2004; 6 15-22
- 12 Koehl U, Sörensen J, Esser R, Zimmermann S, Grüttner H P, Tonn T, Seidl C, Seifried E, Klingebiel T, Schwabe D. IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantaion. Blood Cells Mol Dis. 2004; 33 261-266
- 13 Lang P, Pfeiffer M, Handgretinger R, Schumm M, Demirdelen B, Stanojevic S, Klingebiel T, Koehl U, Kuci S, Niethammer D. Clinical scale isolation of T cell-depleted CD56+ donor lymphocytes in children. Bone Marrow Transplantation. 2002; 29 497-502
- 14 Lowdell M W, Lamb L, Hoyle C, Verladi A, Prentice H G. Non MHC-restricted cytotoxic cells: their roles in the control and treatment of leukemias. Br J Hematol. 2001; 114 11-24
- 15 Passweg J R, Kuhne T, Gregor M, Favre G, Avoledo P, Tichelli A, Gratwohl A. Increased stem cell dose, as obtained using currently available technology, may not be sufficient for engraftment of haploidentical stem cell transplantation. Bone Marrow Transplantation. 2000; 26 1033-1036
- 16 Passweg J R, Stern M, Koehl U, Uharek L, Tichelli A. Use of natural killer cells in hematopoietic stem cell transplantation. Bone Marrow Transplantation. 2005; 35 637-643
- 17 Robertson M J, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990; 76 2421-2438
- 18 Robertson M J, Soiffer R J, Wolf S F. Response of human killer (NK) cells to NK cell stimulatory factor (NKSF): Cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med. 1992; 175 779-788
- 19 Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, Urbani E, Negrin R, Martelli M, Velardi A. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999; 94 333-339
- 20 Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik W D, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli M F, Velardi A. Effectiveness of donor killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002; 100 2097-2100
- 21 Tonn T, Becker S, Esser R, Schwabe D, Seifried E. Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res. 2001; 10 535-544
- 22 Vujanovic N L, Basse P, Herbmann R B, Whiteside T L. Antitumor functions of natural killer cells and control of metastases. Methods. 1996; 9 394-408
- 23 Wawer A, Laws H J, Dilloo D, Göbel U, Burdach S. Long-time survival after unrelated bone marrow transplantation in children and adolescents and targeted therapy with CD25 blockade to prevent GVHD. Klin Pädiatr. 2004; 216 169-175
- 24 Zeiss M, Uharek L, Glass B, Steinmann J, Dreger P, Glasmann W, Schmitz N. Allogeneic MHC mismatched activated natural killer cells administered after bone marrow transplantation provide a strong graft-versus-leukemia effect. Br J Haematol. 1997; 96 757-761
- 25 Zimmermann S, Esser R, Rohrbach E, Klingebiel T, Koehl U. A novel four-colour flow cytometric assay to determine natural killer cell or T-cell-mediated cellular cytotoxicity against leukaemic cells in peripheral or bone marrow specimens containing greater than 20 % of normal cells. J Immunol Methods. 2005; 296 63-76
Ulrike KoehlPh. D.
University Hospital Frankfurt · Pediatric Hematology and Oncology
Theodor Stern Kai 7
60596 Frankfurt
Germany
Phone: +49/69/63 01 49 18
Fax: +49/69/63 01 53 88
Email: koehl@em.uni-frankfurt.de