Subscribe to RSS
DOI: 10.1055/s-2006-926258
Enantioconvergent Access to the Enantiomerically Pure Building Blocks (+)- or (-)-4-Hydroxy-3-methyl-2-cyclohexenone Using a Chemoenzymatic Process
Publication History
Publication Date:
06 February 2006 (online)
Abstract
A convenient chemoenzymatic enantioconvergent access to enantiomerically pure (+)- or (-)-4-hydroxy-3-methyl-2-cyclohexenone is described using a one-pot two-step kinetic resolution-stereoinversion protocol followed by hydrolysis. The key step of the sequence is the spontaneous elimination of an undesired stereocenter. The choice between enzymatic acyl transfer or ester alcoholysis of the corresponding racemic starting material, together with the selectivity of a lipase, determines the absolute configuration of the desired single enantiomer.
Key words
enantioconvergence - biocatalysis - kinetic resolution - stereoinversion - chiral building blocks
- 1
Vargas D.Urbatsch LE.Fischer NH. Phytochemistry 1988, 27: 1413 - 2
Barrero AF.Alvarez-Manzaneda EJ.Herrador MM.Alvarez-Manzaneda R.Quilez J.Chahboun R.Linares P.Rivas A. Tetrahedron Lett. 1999, 40: 8273 - 3
Bieber LW.Krebs HC.Schaefer W. Phytochemistry 1994, 35: 1027 - 4
Ksebati MB.Schmitz FJ.Gunasekara SP. J. Org. Chem. 1988, 53: 3917 -
5a
Galano J.-M.Audran G.Monti H. Tetrahedron 2000, 56: 7477 -
5b
Audran G.Galano J.-M.Monti H. Eur. J. Org. Chem. 2001, 2293 -
5c
Uttaro J.-P.Audran G.Galano J.-M.Monti H. Tetrahedron Lett. 2002, 43: 2757 -
5d
Audran G.Uttaro J.-P.Monti H. Synlett 2002, 1261 -
5e
Uttaro J.-P.Audran G.Palombo E.Monti H. J. Org. Chem. 2003, 68: 5407 -
5f
Uttaro J.-P.Audran G.Monti H. J. Org. Chem. 2005, 70: 3484 - Recent books:
-
6a
Enzymatic Reaction in Organic Media
Koskinen AMP.Klibanov AM. Blackie Academic and Professional; Glasgow: 1996. -
6b
Bornscheuer UT.Kazlauskas RJ. Hydrolases in Organic Synthesis Wiley-VCH; Weinheim: 1999. -
6c
Stereoselective Biocatalysis
Patel RN. Marcel Dekker, Inc.; New York: 2000. -
6d
Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook
Drauz K.Waldmann H. Wiley-VCH; Weinheim: 2002. -
6e
Faber K. Biotransformations in Organic Chemistry 5th ed.: Springer-Verlag; Berlin: 2004. -
6f
Bommarius AS.Riebel BR. Biocatalysis Wiley-VCH; Weinheim: 2004. - Recent reviews:
-
7a
Roberts SM. J. Chem. Soc., Perkin Trans. 1 2001, 1475 -
7b
Zaks A. Curr. Opin. Chem. Biol. 2001, 5: 130 -
7c
Koeller KM.Wong C.-H. Nature (London) 2001, 409: 232 -
7d
Klibanov AM. Nature (London) 2001, 409: 241 -
7e
Thomas SM.DiCosimo R.Nagarajan V. Trends Biotechnol. 2002, 20: 238 -
7f
Hanefeld U. Org. Biomol. Chem. 2003, 1: 2405 -
7g
Garcia-Junceda E.Garcia-Garcia JF.Fernandez-Mayoralas AB.Fernandez-Mayoralas A. Bioorg. Med. Chem. 2004, 12: 1817 -
7h
Ghanem A.Aboul-Enein HY. Tetrahedron: Asymmetry 2004, 15: 3331 -
7i
Faber K.Kroutil W. Curr. Opin. Chem. Biol. 2005, 9: 181 -
7j
Garcia-Urdiales E.Alfonso I.Gotor V. Chem. Rev. 2005, 105: 313 -
8a
Noyori R.Tokunaga M.Kitamura M. Bull. Chem. Soc. Jpn. 1995, 68: 36 -
8b
Stecher H.Faber K. Synthesis 1997, 1 -
8c
Stürmer R. Angew. Chem., Int. Ed. Engl. 1997, 36: 1173 -
8d
El Gihani MT.Williams JMJ. Biocatal. Biotransform. 1999, 3: 11 -
8e
Strauss UT.Felfer U.Faber K. Tetrahedron: Asymmetry 1999, 10: 107 -
8f
Azerad R.Buisson D. Curr. Opin. Biotechnol. 2000, 11: 565 -
8g
Faber K. Chem. Eur. J. 2001, 7: 5004 -
8h
Huerta FF.Minidis ABE.Bäckvall J.-E. Chem. Soc. Rev. 2001, 30: 321 -
8i
Kim MJ.Ahn Y.Park J. Curr. Opin. Biotechnol. 2002, 13: 578 -
8j
Pàmies O.Bäckvall J.-E. Chem. Rev. 2003, 103: 3247 -
8k
Pellissier H. Tetrahedron 2003, 59: 8291 -
8l
Pàmies O.Bäckvall J.-E. Trends Biotechnol. 2004, 22: 130 -
8m
Turner NJ. Curr. Opin. Chem. Biol. 2004, 8: 114 -
8n
Martín-Matute B.Edin M.Bogár K.Bäckvall J.-E. Angew. Chem. Int. Ed. 2004, 43: 6535 -
9a
Mitsuda S.Umemura T.Hirohara H. Appl. Microbiol. Biotechnol. 1988, 29: 310 -
9b
Danda H.Nagatomi T.Maehara A.Umemura T. Tetrahedron 1991, 47: 8701 -
9c
Mayer SF.Steinreiberg A.Orru RVA.Faber K. J. Org. Chem. 2002, 67: 9115 -
9d
Wallner A.Mang H.Glueck SM.Steinreiber A.Mayer SF.Faber K. Tetrahedron: Asymmetry 2003, 14: 2427 -
9e
Ueberbacher BJ.Osprian I.Mayer SF.Faber K. Eur. J. Org. Chem. 2005, 1266 -
10a
Vänttinen E.Kanerva LT. Tetrahedron: Asymmetry 1995, 6: 1779 -
10b
Pedragosa-Moreau S.Morisseau C.Baratti J.Zylber J.Archelas A.Furstoss R. Tetrahedron 1997, 53: 9707 - 11
Kazlauskas RJ.Weissfloch ANE.Rappoport AT.Cuccia LA. J. Org. Chem. 1991, 56: 2656 - For discussions of the cesium effect, see:
-
13a
Dijkstra G.Kruizinga WH.Kellogg RM. J. Org. Chem. 1987, 52: 4230 -
13b
Ostrowicki A.Koepp E.Vögtle F. Top. Curr. Chem. 1992, 161: 37 -
13c
Salvatore RN.Nagle AS.Schmidt SE.Jung KW. Org. Lett. 1999, 1: 1893 -
14a
Kruizinga WH.Strijtveen B.Kellogg RM. J. Org. Chem. 1981, 46: 4321 -
14b
Arbelo DO.Castro-Rosario L.Prieto JA. Synth. Commun. 2003, 33: 3211 ; and references cited therein - 16 Using commercially available AD-mix-α or AD-mix-β, the Sharpless AD reaction applied to 3-methyl-3-cyclohexen-one, also afforded directly the target molecule 1 by an in situ elimination of the tertiary hydroxyl group in 2 (64% yield), but in the racemic form, see:
Sharpless KB.Amberg W.Bennani YL.Crispino GA.Hartung J.Jeong K.-S.Kwong H.-L.Morikawa K.Wang Z.-M.Xu D.Zhang X.-L. J. Org. Chem. 1992, 57: 2768
References and Notes
Characterization of Compound 2: white solid; mp 62 °C. IR (KBr): ν = 3412, 1728, 1211, 1159 cm-1. 1H NMR (300 MHz, CDCl3): δ = 3.80 (dd, J = 7.2, 3.6 Hz, 1 H), 3.07 (s, 2 OH), 2.66 and 2.35 (ABX, J = 14.0, 1.5 Hz, 2 H), 2.49 (dddd, J = 14.2, 7.9, 6.2, 1.7 Hz, 1 H), 2.25 (dddd, J = 14.2, 7.2, 6.0, 1.1 Hz, 1 H), 2.05 (dtd, J = 13.6, 7.2, 6.2 Hz, 1 H), 1.93 (dddd, J = 13.6, 7.9, 6.0, 3.6 Hz, 1 H), 1.24 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 209.8 (C), 75.0 (C), 72.8 (CH), 51.3 (CH2), 36.8 (CH2), 28.1 (CH2), 26.1 (CH3). Anal. Calcd for C7H12O3: C, 58.32; H, 8.39. Found: C, 58.21; H, 8.43.
Characterization of Compound 3: white solid; mp 106 °C. IR (KBr): ν = 3391, 1757, 1723, 1148 cm-1. 1H NMR (300 MHz, CDCl3): δ = 5.00 (dd, J = 8.8, 4.1 Hz, 1 H), 2.54 and 2.40 (ABX, J = 14.6, 1.7 Hz, 2 H), 2.36 (m, 2 H), 2.18-2.05 (partially overlapped m, 1 H), 2.08 (s, 3 H), 1.97 (m, 1 H), 1.20 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 207.7 (C), 170.4 (C), 75.0 (CH), 73.7 (C), 51.7 (CH2), 37.4 (CH2), 26.3 (CH3), 25.3 (CH2), 20.9 (CH3). Anal. Calcd for C9H14O4: C, 58.05; H, 7.58. Found: C, 57.89; H, 7.60.
CAL-B and RML lipases also showed high enantio-selectivity, but with a slightly lower ee.