Geburtshilfe Frauenheilkd 2007; 67(3): 228-235
DOI: 10.1055/s-2007-964944
Übersicht

Georg Thieme Verlag KG Stuttgart · New York

Angiogenesefaktoren in der Schwangerschaft: Indikatoren für die Präeklampsie

Angiogenic Factors during Pregnancy: Indicators of PreeclampsiaM. Schmidt1 , A. Gellhaus2 , S. Kasimir-Bauer1 , E. Winterhager2 , R. Kimmig1
  • 1Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Essen, Essen
  • 2Institut für Anatomie, Universitätsklinikum Essen, Essen
Further Information

Publication History

eingereicht 30.3.2006 revidiert 30.5.2006

akzeptiert 27.6.2006

Publication Date:
29 March 2007 (online)

Zusammenfassung

Die Präeklampsie ist eine der Hauptursachen maternaler, fetaler und neonataler Mortalität. Trotz intensiver wissenschaftlicher Untersuchungen ist die Ätiologie der Präeklampsie weitgehend ungeklärt. Bis heute gilt die inadäquate Umwandlung der myometranen Segmente der Spiralarterien in uteroplazentare Arterien durch eine unzureichende endovaskuläre Invasion des Trophoblasten als pathogenetische Voraussetzung einer Präeklampsie. Als Folge dieser gestörten Invasion des Trophoblasten und der geringen O2-Versorgung scheint auch die plazentare Angiogenese großen Veränderungen unterworfen und für die Entstehung einer Präeklampsie wichtig zu sein. Vascular endothelial growth factor (VEGF) und placental growth factor (PLGF) sind die wichtigsten Angiogenesefaktoren und Regulatoren einer adäquaten plazentaren Gefäßentwicklung. Diese Expression von VEGF und PLGF ist in präeklamptischen Schwangerschaften im Vergleich zu nicht präeklamptischen Schwangerschaften erniedrigt. Dagegen ist die Expression ihres Rezeptors, des löslichen fms-like tyrosine kinase receptors (sFlt-1), der anti-angiogenetische Eigenschaften besitzt, in präeklamptischen Schwangerschaften erhöht. Zusätzlich konnten wir zeigen, dass die Expression der CCN-Proteine CYR61 und NOV, die ebenfalls zu den pro-angiogenen Faktoren gehören, in der Plazenta präeklamptischer Patientinnen verringert ist. Diese Übersichtsarbeit fasst das derzeitige Verständnis der Rolle der Angiogenesefaktoren in der Entstehung einer Präeklampsie zusammen.

Abstract

Preeclampsia is a major cause of maternal, fetal and neonatal mortality worldwide. The etiology of preeclampsia is still unclear. Currently, the inadequate transformation of the smooth muscle cells of spiral arteries in the placental bed caused by an insufficient endovascular invasion of the trophoblast is considered to be the major reason for the development of preeclampsia. This insufficient invasion seems to lead to altered placental angiogenesis which thus has causal importance for the development of preeclampsia. Vascular endothelial growth factor (VEGF) and placental growth factor (PLGF) are the most important angiogenic factors with regulatory functions for placental vessel development. In preeclamptic pregnancies the expression of VEGF and PLGF was decreased. However, the expression of the corresponding receptor, the soluble fms-like tyrosine kinase receptor, which is considered to have anti-angiogenic properties, was elevated in preeclamptic pregnancies. CYR61 and NOV which belong to a group of proteins, the CCN-family, play also an important role in the regulation of placental angiogenesis. Recently, a decreased expression of both proteins in the placentae of preeclamptic women was detected. This review summarizes our current understanding of the role of angiogenic factors in the pathogenesis of preeclampsia.

Literatur

  • 1 Schulz M, Wacker J. Epidemiologie der Präeklampsie. Heilmann L, Rath W Schwangerschaftshochdruck. Stuttgart; Wissenschaftliche Verlagsgesellschaft 2002: 215-222
  • 2 National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy . Report.  Am J Obstet Gynecol. 2002;  183 1-22
  • 3 Brown M A, Lindheimer M D, de Swiet M. et al . The classification and diagnosis of hypertensive disorder of pregnancy. Statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP).  Hypertension in Pregnancy. 2001;  20 20-30
  • 4 Rath W. Hypertensive Schwangerschaftserkrankungen. Rath W, Friese K Erkrankungen in der Schwangerschaft. Stuttgart, New York; Thieme 2005: 73-97
  • 5 Sibai B M. Diagnosis and management of gestational hypertension and preeclampsia.  Obstet Gynecol. 2003;  102 181-192
  • 6 Vatten L J, Skjaerven R. Is pre-eclampsia more than one disease?.  BJOG. 2004;  111 298-302
  • 7 Hauth J C, Ewell M G, Levine R I, Esterlitz J R, Sibai B M, Curet L B. Pregnancy outcome in healthy nulliparous women who subsequently developed hypertension.  Obstet Gynecol. 2000;  95 24-28
  • 8 Sibai B M, Dekker G, Kupferminc M. Pre-eclampsia.  Lancet. 2005;  365 785-799
  • 9 Huppertz B, Peters L LH. Vascular biology in implantation and placentation.  Angiogenesis. 2005;  8 157-167
  • 10 Craven C M, Morgan T, Ward K. Decidual spiral artery remodelling begins before cellular interaction with cytotrophoblasts.  Placenta. 1998;  19 241-252
  • 11 Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: Implications for the pathogenesis of intrauterine growth retardation and preeclampsia.  Biol Reprod. 2003;  69 1-7
  • 12 Benirschke K, Kaufmann P. Pathology of the Human Placenta, 4th ed. New York; Springer 2000
  • 13 Hirano H, Imai Y, Ito H. Spiral artery of placenta: Development and pathology - immunohistochemical, microscopical, and electron-microscopic study.  Kobe J Med Sci. 2002;  48 13-23
  • 14 Jauniaux E, Hempstock J, Greenwold N, Burton G J. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies.  Am J Pathol. 2003;  162 115-125
  • 15 Hustin J, Jauniaux E, Schaaps J P. Histological study of the materno-embryonic interface in spontaneous abortion.  Placenta. 1990;  11 477-486
  • 16 Brosens I A. The utero-placental vessels at term - the distribution and extent of physiological changes.  Trophoblast Res. 1988;  3 61-67
  • 17 Sheppard B L, Bonnar J. The maternal blood supply to the placenta in pregnancy complicated by intrauterine fetal growth retardation.  Trophoblast Res. 1988;  3 69-81
  • 18 Kadyrov M, Schmitz C, Black S, Kaufmann P, Huppertz B. Pre-eclampsia and maternal anaemia display reduced apoptosis and opposite invasive phenotypes of extravillous trophoblast.  Placenta. 2003;  24 540-548
  • 19 Lam Ch, Lim K-H, Karumanchi S A. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia.  Hypertension. 2005;  46 1077-1085
  • 20 Te Velde E A, Exalto N, Hesseling P, van der Linden H C. First trimester development of human chorionic villous vascularization studied with CD34 immunohistochemistry.  Hum Reprod. 1997;  12 1577-1581
  • 21 Jauniaux E, Burton G J, Moscoso G J, Hustin J. Development of the early human placenta: a morphometric study.  Placenta. 1991;  12 269-276
  • 22 Jackson M R, Mayhew T M, Boyd P A. Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term.  Placenta. 1992;  13 357-370
  • 23 Mayhew T M. Fetoplacental angiogenesis during gestation is biphasic, longitudinal and occurs by proliferation and remodelling of vascular endothelial cells.  Placenta. 2002;  23 742-750
  • 24 Conde-Agudelo A, Villar J, Lindheimer M. World Health Organization Systematic Review of Screenings Tests for Preeclampsia.  Obstet Gynecol. 2004;  104 1367-1391
  • 25 Sane D C, Anton L, Brosnihan K B. Angiogenic growth factors and hypertension.  Angiogenesis. 2004;  7 193-201
  • 26 Ferrara N, Gerber H P, LeCouter J. The biology of VEGF and its receptors.  Nat Med. 2003;  9 669-676
  • 27 Gerber H P, Mc Murtrey A, Kowalski J. et al . Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation.  J Biol Chem. 1998;  273 30336-30343
  • 28 Senger D R, Galli S J, Dvorak A M, Perruzzi C A, Harvey V S, Dvorak H F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.  Science. 1983;  219 983-985
  • 29 Dvorak H F, Brown L F, Detmar M, Dvorak A M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis.  Am J Pathol. 1995;  146 1029-1039
  • 30 Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declerq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele.  Nature. 1996;  380 435-439
  • 31 Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea K S, Powell-Braxton L, Hillan K J, Moore M W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene.  Nature. 1996;  380 439-442
  • 32 Persico M, Vincenti V, DiPalma T. Structure, expression and receptor-binding properties of placenta growth factor (PLGF).  Curr Topics Microbiol Immunol. 1999;  237 31-40
  • 33 Ahmed A, Li X F, Dunk C, Whittle M J, Rushton D I, Rollason T. Colocalisation of vascular endothelial growth factor and its Flt-1 receptor in human placenta.  Growth Factors. 1995;  12 235-243
  • 34 Clark D, Smith S, Licence D, Evans A, Charnock-Jones D. Comparison of expression patterns for placenta growth factor, vascular endothelial growth factor (VEGF), VEGF‐B and VEGF‐C in the human placenta throughout gestation.  J Endocrinol. 1998;  159 459-467
  • 35 Tseng J J, Chou M M, Hsieh Y T, Wen M C, Ho E S, Hsu S L. Differential expression of vascular endothelial growth factor, placenta growth factor and their receptors in placentae from pregnancies complicated by placenta accreta.  Placenta. 2006;  27 70-78
  • 36 Terman B I, Dougher-Vermazen M, Carrion M E. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor.  Biochem Biophys Res Comm. 1992;  187 1579-1586
  • 37 Shibuya M, Yamagucgi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family.  Oncogene. 1990;  5 519-524
  • 38 Mac Gabhann F, Popel A S. Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells.  Am J Physiol Heart Circ Physiol. 2003;  286 H153-H164
  • 39 Chaiworapongsa T, Romero R, Kim Y M, Kim G J, Kim M R, Espinoza J, Bujold E, Goncalves L, Gomez R, Edwin S, Mazor M. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia.  J Matern Fetal Neonatal Med. 2005;  17 3-18
  • 40 Hunter A, Aitkenhead M, Caldwell C, McCracken G, Wilson D, McClure N. Serum levels of vascular endothelial growth factor in preeclamptic and normotensive pregnancy.  Hypertension. 2000;  36 965-969
  • 41 Tsatsaris V, Goffin F, Munaut C, Brichant J F, Pignon M R, Noel A, Schaaps J P, Cabrol D, Frankenne F, Foidart J M. Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological consequences.  J Clin Endocrinol Metab. 2003;  88 5555-5563
  • 42 McKeeman G C, Ardill J E, Caldwell C M, Hunter A J, McClure N. Soluble vascular endothelial growth factor receptor-1 (sFLT‐1) is increased throughout gestation in patients who have preeclampsia develop.  Am J Obstet Gynecol. 2004;  191 1240-1246
  • 43 Helske S, Vuorela O, Carpen C, Horning C, Weich H, Halmesmake E. Expression of vascular endothelial growth factor receptors 1, 2 and 3 in placentas from normal and complicated pregnancies.  Mol Hum Reprod. 2001;  7 205-210
  • 44 Koga K, Osuga Y, Yoshino O, Hirota Y, Ruimeng X, Hirata T, Takeda S, Yano T, Tsutsumi O, Taketani Y. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR‐1) levels in women with preeclampsia.  J Clin Endocrinol Metab. 2003;  88 2348-2351
  • 45 Schlembach D, Fischer T, Meurer B, Strick R, Strissel P, Beckmann M W. Angiogenetische Faktoren bei Präeklampsie und intrauteriner Wachstumsretardierung.  Geburtsh Frauenheilk. 2003;  63 12
  • 46 Stepan H, Geide A, Faber R. sFlt1 als prognostischer Marker für Präeklampsie und IUGR.  Geburtsh Frauenheilk. 2005;  66 S1
  • 47 Thadhani R, Mutter W P, Wolf M, Levine R J, Taylor R N, Sukhatme V P, Ecker J, Karumanchi S A. First trimester placental growth factor and soluble fms-like tyrosine kinase 1 and risk for preeclampsia.  J Clin Endocrinol Metab. 2004;  89 770-775
  • 48 Taylor R N, Grimwood J, Taylor R S, McMaster M T, Fisher S J, North R A. Longitudinal serum concentrations of placental growth factor: evidence for abnormal placental angiogenesis in pathologic pregnancies.  Am J Obstet Gynecol. 2003;  188 177-182
  • 49 Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, Alitalo K, Damsky C, Fisher S J. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome.  Am J Pathol. 2002;  160 1405-1423
  • 50 Maynard S E, Min J Y, Merchan J, Lim K H, Li J, Mondal S, Libermann T A, Morgan J P, Sellke F W, Stillman I E, Epstein F H, Sukhatme V P, Karumanchi S A. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.  J Clin Invest. 2003;  111 649-658
  • 51 Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis.  Exp Cell Res. 2006;  312 549-560
  • 52 Levine R J, Maynard S E, Qian C, Lim K H, England L J, Yu K F, Schistermann E F, Thadhani R, Sachs B P, Epstein F H, Sibai B M, Sukhatme V P, Karumanchi S A. Circulating angiogenic factors and the risk of preeclampsia.  N Engl J Med. 2004;  350 672-683
  • 53 Torry D S, Mukherjea D, Arroyo J, Torry R J. Expression and function of placental growth factor: implications for abnormal placentation.  J Soc Gynecol Invest. 2003;  10 178-188
  • 54 Tidwell S C, Ho H N, Chiu W H, Torry R J, Torry D S. Low maternal serum levels of placenta growth factor as an antecedent of clinical preeclampsia.  Am J Obstet Gynecol. 2001;  184 1267-1272
  • 55 Bersinger N A, Odegard R A. Second and third-trimester serum levels of placental proteins in preeclampsia and small-for-gestational age pregnancies.  Acta Obstet Gynecol Scand. 2004;  83 3745
  • 56 Chappell L C, Seed P T, Briley A, Kelly F J, Hunt B J, Charnock-Jones D S, Mallet A I, Poston L. A longitudinal study of biochemical variables in women at risk of preeclampsia.  Am J Obstet Gynecol. 2002;  187 127-136
  • 57 Krauss T, Pauer H U, Augustin H G. Prospective analysis of placenta growth factor (PLGF) concentrations in the plasma of women with normal pregnancy and pregnancies complicated by preeclampsia.  Hypertens Pregnancy. 2004;  23 101-111
  • 58 Polliotti B M, Fry A G, Saller D N, Mooney R A, Cox C, Miller R K. Second-trimester maternal serum placental growth factor and vascular endothelial growth factor for predicting severe, early-onset preeclampsia.  Obstet Gynecol. 2003;  101 1266-1274
  • 59 Su Y N, Lee C N, Cheng W F, Shau W Y, Chow S N, Hsieh F J. Decreased maternal serum placenta growth factor in early second trimester and preeclampsia.  Obstet Gynecol. 2001;  97 898-904
  • 60 Wolf M, Shah A, Lam C, Martinez A, Smirnakis K V, Epstein F H, Taylor R N, Ecker J L, Karumanchi S A, Thadhani R. Circulating levels of the angiogenic markers sFLT‐1 are increased in first versus second pregnancies.  Am J Gyn Obstet. 2005;  193 16-22
  • 61 Eskenazi B, Fenster L, Sidney S. A multivariate analysis of risk factors for preeclampsia.  JAMA. 1991;  266 237-241
  • 62 Maynard S E, Min J Y, Merchan J, Lim K H, Li J, Mondal S, Libermann T A, Morgan J P, Sellke F W, Stillmann I E, Epstein F H, Sukhatme V P, Karumanchi S A. Excess placental soluble fms-like tyrosine kinase 1 (sFLT1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.  J Clin Invest. 2003;  111 649-658
  • 63 Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues.  Mol Pathol. 2001;  54 57-79
  • 64 Perbal B. CCN proteins: multifunctional signalling regulators.  Lancet. 2004;  363 62-64
  • 65 Rachal A W, Brigstock D R. Structural and functional properties of CCN proteins.  Vitamines and Hormones. 2005;  70 69-103
  • 66 Bleau A M, Planque N, Perbal B. CCN proteins and cancer: two to tango.  Front Biosci. 2005;  10 998-1009
  • 67 Kolesnikova T V, Lau L F. Human CYR61-mediated enhancement of bFGF-induced DNA synthesis in human umbilical vein endothelial cells.  Oncogene. 1998;  16 747-754
  • 68 Li C L, Martinez V, Hem B, Lombet A, Perbal B. A role for CCN3 (NOV) in calcium signaling.  Mol Pathol. 2002;  55 250-261
  • 69 Babic A M, Kireeva M L, Kolesnikova T V, Lau L F. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth.  Proc Natl Acad Sci USA. 1998;  95 6355-6360
  • 70 Ellis P D, Chen Q, Barker P J, Metcalfe J C, Kemp P R. NOV gene encodes adhesion factor for vascular smooth muscle cells and is dynamically regulated in response to vascular injury.  Arterioscler Thromb Vasc Biol. 2000;  20 1912-1919
  • 71 Ellis P D, Metcalfe J C, Hyvonen M, Kemp P R. Adhesion of endothelial cells to NOV is mediated by the integrins alphavbeta3 and alpha5beta1.  J Vasc Res. 2003;  40 234-243
  • 72 Leu S J, Lam S C, Lau L F. Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells.  J Biol Chem. 2002;  277 46248-46255
  • 73 Lin C G, Leu S J, Chen N, Tebeau C M, Lin S X, Yeung C Y, Lau L F. CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family.  J Biol Chem. 2003;  278 24200-24208
  • 74 Chen N, Leu S J, Todorovic V, Lam S C, Lau L F. Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells.  J Biol Chem. 2004;  279 44166-44176
  • 75 Mo F E, Muntean A G, Chen C C, Stolz D B, Watkin S C, Lau L F. CYR61 (CCN1) is essential for placental development and vascular integrity.  Mol Cell Biol. 2002;  22 8709-8720
  • 76 Gellhaus A, Schmidt M, Dunk C, Lye S TJ, Kimmig R, Winterhager E. Decreased expression of angiogenic regulators CYR61 (CCN1) and NOV (CCN3) in human placenta is associated with pre-eclampsia.  Mol Hum Reprod. 2006;  12 389-399
  • 77 Castellucci M, Scheper M, Scheffen I, Celona A, Kaufmann P. The development of the human placental villous tree.  Anat Embryol. 1990;  181 117-128
  • 78 Benirschke K, Kaufmann (eds) P. Pathology of the Human Placenta. 4th ed. New York; Springer-Verlag 2000
  • 79 Kaufmann P, Mayhew T M, Charnock-Jones D S. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy.  Placenta. 2004;  25 114-126
  • 80 Mayhew T M, Wijesekara J, Baker P N, Ong S S. Morphometric evidence that villous development and fetoplacental angiogenesis are compromised by intrauterine growth restriction but not by preeclampsia.  Placenta. 2004;  25 829-833
  • 81 Egbor M, Ansari T, Morris N, Green C J, Sibbons P D. Pre-eclampsia and fetal growth restriction: How morphometrically different is the placenta?.  Placenta. 2006;  27 727-734
  • 82 Bohn H, Kraus W, Winckler W. Purification and characterization of two new soluble placental tissue proteins (PP13 and PP17).  Oncodev Biol Med. 1983;  4 343-350
  • 83 Than N G, Pick E, Bellyei S, Szigeti A, Burger O, Berente Z, Janaky T, Boronkai A, Kliman H, Meiri H, Bohn H, Than G N, Sumegi B. Functional analyses of placental protein 13/galectin-13.  Eur J Biochem. 2004;  271 1065-1078
  • 84 Visegrady B, Than N G, Kilar F, Sümegi B, Than G N, Bohn H. Homology modelling and molecular dynamics studies of human placental tissue protein 13 (galectin-13).  Prot Eng. 2001;  14 875-880
  • 85 Burger O, Pick E, Zwickel J, Klayman M, Meiri H, Slotky R, Mandel S, Rabinovitch, Paltieli Y, Admon A, Gonen R. Placental protein 13 (PP‐13): effects on cultured trophoblasts, and its detection in human body fluids in normal and pathological pregnancies.  Placenta. 2004;  25 608-622
  • 86 Nicolaides K H, Bindra R, Turan O M, Chefetz I, Sammar M, Meiri H, Tal J, Cuckles H S. A novel approach to first-trimester screening for early pre-eclampsia combining serum PP‐13 and Doppler ultrasound.  Ultrasound Obstet Gynecol. 2006;  27 13-17

Dr. med. Markus Schmidt

Klinik für Frauenheilkunde und Geburtshilfe
Universitätsklinikum Essen

Hufelandstraße 55

45122 Essen

Email: markus.schmidt@uk-essen.de