Subscribe to RSS
DOI: 10.1055/s-2007-983788
β-Silyl Arenes in the Arene-Olefin Photocyclization Reaction
Publication History
Publication Date:
12 July 2007 (online)
Abstract
The ‘β-silyl effect’ of ground-state chemistry has been found to be operative in excited-state systems as well, where it exerts just as remarkable of an effect on the yields and selectivity of the intermolecular arene-olefin photocyclization reaction. Benzyltrimethylsilane has been found to undergo intermolecular arene-olefin photocyclization with alicyclic hydrocarbon alkenes to provide 2,6-meta-adducts with yields of 65-90% in a regio- and stereoselective manner. Particularly encouraging are the reactions with cyclohexene and with cis-cyclooctene, as both of these substrates give anomalous results with many arenes, but fall perfectly in line when coupling with benzyltrimethylsilane. These data augur well for the use of β-silyl directing groups in more complex photocyclization reactions. The ability of a C-Si sp3 bond to stabilize an incipient positive charge in the β-position by hyperconjugation apparently also allows it to stabilize a transiently electron-deficient excited state, in the same way that an electron-donating group (e.g., a methyl or a methoxy group) has been observed to direct the regiochemistry of the arene-olefin photocyclization reaction. To fully characterize the photoadducts, they have been elaborated via radical addition of substituted thiophenols to crystalline compounds and X-ray crystal structures obtained.
Key words
photochemistry - cycloadditions - neighboring group effects - hyperconjugations - radical reactions
- 1
Bryce-Smith D.Drew MGB.Fenton GA.Gilbert A.Proctor A. J. Chem. Soc., Perkin Trans. 2 1991, 779 - For reviews see:
-
2a
Cornelisse J. Chem. Rev. 1993, 615 -
2b
Wender PA.Siggel L.Nuss JM. Org. Photochem. 1989, 10: 357 - 3
Ors JA.Srinivasan R. J. Org. Chem. 1977, 42: 1321 - 4
Bryce-Smith D.Foulger B.Forrester J.Gilbert A.Orger BH.Tyrell HH. J. Chem. Soc., Perkin Trans. 1 1980, 55 - 5
Sheridan RS. Tetrahedron Lett. 1982, 23: 267 - 6
Bryce-Smith D.Fenton GA.Gilbert A. Tetrahedron Lett. 1982, 23: 2697 - 7
Baciocchi E.Crescenzi M.DelGiacco T. J. Chem. Soc., Perkin Trans. 1 1991, 3377 - 8
Baciocchi E. J. Chem. Soc., Chem. Commun. 1992, 59 - 9
Wender PA.Dore TM.deLong MA. Tetrahedron Lett. 1996, 37: 7687 - 10
Gilbert A.Yianni P. Tetrahedron Lett. 1977, 18: 242 - 11
Reedich DE.Sheridan RS. J. Am. Chem. Soc. 1985, 107: 3360 - 12
Yamamura S.Shizuri Y.Shigemori H.Okuno Y.Ohkubo M. Tetrahedron 1991, 47: 635 - 13
Buchi G.Chu P.-S. Tetrahedron 1981, 37: 4509 - 14
Mattay J.Runsink J.Hertel R. J. Photochem. 1987, 37: 335 -
15a
Spangler LA.Swenton JS. J. Org. Chem. 1984, 49: 1800 -
15b
Rabideau PW. Tetrahedron Lett. 1991, 32: 3969 - 16
Mizuno K.Yasueda M.Otsuji Y. Chem. Lett. 1988, 229 - 17
Rabideau PW.Marcinow Z. Tetrahedron Lett. 1988, 29: 3777 - 18
Bartoli G. J. Org. Chem. 1987, 52: 4381 - 19
Paquette LA.Yan TH.Wells GJ. J. Org. Chem. 1984, 49: 3610 - 20
Grignon-Dubois M.Dunogues J.Calas R. Synthesis 1976, 737 - 21
Ohno M.Ohshiro Y. Synlett 1991, 919 - 22
Wender PA.Howbert JJ. Tetrahedron Lett. 1983, 24: 5325 - 23
Bryce-Smith D.Drew MGB.Fenton GA.Gilbert A.Proctor A. J. Chem. Soc., Perkin Trans. 2 1991, 779