Subscribe to RSS
DOI: 10.1016/j.homp.2009.11.009
Quasi-quantum phenomena: the key to understanding homeopathy
Subject Editor:
Publication History
Received20 January 2009
revised26 October 2009
accepted30 November 2009
Publication Date:
29 December 2017 (online)
On the basis of the first- and second-order Gompertzian kinetics it has been proved that the crystallization and its reciprocal process of dissolution belong to the class of quasi-quantum non-local coherent phenomena. Hence, there exists a direct link to homeopathy: molecules of the remedy prepared in the process of dilution of the active substance are non-locally interconnected at-a-distance. The results obtained provide strong arguments justifying formulated ad hoc macroscopic versions of quantum non-locality, entanglement and coherence employed in interpretation of the homeopathic remedies activity and effectiveness. In particular they are consistent with the predictions of the weak quantum theory developed by Atmanspacher and coworkers.
-
References
- 1 Vittorio E., Marcella N. Thermodynamics of extremely diluted aqueous solutions. Ann N Y Acad Sci 1999; 827: 241-248.
- 2 Shepperd J. Chaos theory: implications for homeopathy. J Am Inst Homeopath 1994; 87: 22-29.
- 3 Weingärtner O. Homeopathy and quantum field theory. Forsch Komplementarmed 2006; 13: 140.
- 4 Weingärtner O. The homeopathic mechanism from the viewpoint of a quantum mechanical paradoxon. J Altern Complement Med 2005; 11: 773-774.
- 5 Weingärtner O. What is the therapeutically active ingredient of homeopathic potencies?. Homeopathy 2003; 92: 145-151.
- 6 Atmanspacher H., Romer H., Walach H. Weak quantum theory: complementarity and entanglement in physics and beyond. Found Phys 2002; 32: 379-406.
- 7 Walach H. Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory. Forsch Komplementarmed 2003; 10: 192-200.
- 8 Hyland M.E. Does a form of “entanglement” between people explain healing? An examination of hypotheses and methodology. Complement Ther Med 2004; 12: 198-208.
- 9 Hyland M.E. Entanglement and some heretical thoughts about homeopathy. Homeopathy 2004; 94: 105-106.
- 10 Walach H. Magic of signs: a non-local interpretation of homeopathy. Br Homeopath J 2000; 89: 127-140.
- 11 Takagi S. Macroscopic quantum tunnelling. Cambridge: University Press; 2002.
- 12 Leggett A.J. The problems of physics. Oxford: University Press; 1987.
- 13 Milgrom L.R. Patient–practitioner–remedy entanglement. Part 1: A qualitative, non-local metaphor for homeopathy based on quantum theory. Homeopathy 2002; 91: 239-248.
- 14 Milgrom L.R. Patient–practitioner–remedy entanglement. Part 2: Extending the metaphor for homeopathy using molecular quantum theory. Homeopathy 2003; 92: 35-43.
- 15 Milgrom L.R. Patient–practitioner–remedy entanglement. Part 3: Refining the quantum metaphor for homeopathy. Homeopathy 2003; 92: 152-160.
- 16 Milgrom L.R. Patient–practitioner–remedy entanglement. Part 4: Towards classification and unification of the different entanglement models for homeopathy. Homeopathy 2004; 93: 34-42.
- 17 Milgrom L.R. Patient–practitioner–remedy entanglement. Part 5: Can homeopathic remedy reactions be outcomes of patient–practitioner–remedy entanglement?. Homeopathy 2004; 93: 94-98.
- 18 Milgrom L.R. Journeys in the country of the blind: entanglement theory and the effects of blinding on trials of homeopathy and homeopathic proving. Evid Based Complement Alternat Med 2007; 4: 7-16.
- 19 Molski M., Konarski J. Coherent states of Gompertzian growth. Phys Rev E 2003; 68: 021916.
- 20 Molski M. Space-like coherent states of time-dependent Morse oscillator. Eur Phys J D 2006; 40: 411-418.
- 21 Hankey A. Macroscopic quantum coherence in patient–practitioner–remedy entanglement: the quantized fluctuation field perspective. Evidence-based Complement Altern Med 2008; 5: 1-3.
- 22 Fröhlich H. Long range coherence and energy storage in biological systems. Int J Quantum Chem 1968; 2: 641-649.
- 23 Del Guidice E., Preparata G., Vitiello G. Water as a free electron dipole laser. Phys Rev Lett 1988; 61: 1085-1088.
- 24 Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 1825; 115: 513-585.
- 25 Zwietering M.H., Jongenburger I., Rombouts F.M., van't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol 1990; 56: 1875-1881.
- 26 Kloek W., Walstra P., Van Vliet T. Crystallization kinetics of fully hydrogenated palm oil in sunflower oil mixtures. J Am Oil Chem Soc 2000; 77: 389-398.
- 27 Foubert I., Vanrolleghem P.A., Vanhoutte B., Dewettinck K. Dynamic mathematical model of the crystallization kinetics of fats. Food Res Int 2002; 35: 945-956.
- 28 Tittel W., Brendel J., Gissin B., Herzog T., Zbinden H., Gisin N. Experimental demonstration of quantum correlations over more than 10 km. Phys Rev A 1988; 57: 3229-3232.
- 29 Einstein A., Podolsky B., Rosen N. Can quantum-mechanical description of physical reality be considered complete?. Phys Rev 1935; 47: 777-780.
- 30 Bohr N. Can quantum-mechanical description of physical reality be considered complete?. Phys Rev 1935; 48: 696-702.
- 31 Talbot M. Holographic Universe. Harper Collins; 1991.
- 32 Aspect A., Grangier P., Roger G. Experimental realization of Einstein–Podolsky–Rosen gedanken experiment: a new violation of Bell's inequalities. Phys Rev Lett 1982; 48: 91-94.
- 33 Aspect A., Dalibard J., Roger G. Experimental test of Bell's inequalities using time-varying analyzers. Phys Rev Lett 1982; 49: 1804-1807.
- 34 Schrödinger E. Discussion of probability relations between separated systems. Proc Camb Phil Soc 1935; 31: 555-563.
- 35 Horodecki M., Horodecki P., Horodecki R. Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys Rev Lett 1998; 80: 5239-5242.
- 36 Horodecki K., Horodecki M., Horodecki P., Oppenheim J. Secure key from bound entanglement. Phys Rev Lett 2005; 94: 160502.
- 37 Lo H.-K., Popescu S., Spiller T. Introduction to quantum computation and information. Singapore: World Scientific; 1998.
- 38 Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurter H., Zeilinger A. Experimental quantum teleportation. Nature 1997; 390: 575-579.
- 39 Eberhard P.H. Bell's theorem without hidden variables. Il Nuovo Cimento B 1977; 38: 75-80.
- 40 Eberhard P.H. Bell's theorem and the different concepts of locality. Il Nuovo Cimento B 1977; 46: 392-419.
- 41 Ghirardi G.C., Rimini A., Weber T. A general argument against superluminal transmission the quantum mechanical measurement process. Letters Nuovo Cimento 1980; 27: 293-298.
- 42 Ghirardi G.C., Grassi R., Pearle P. Comment on explicit collapse and superluminal signals. Phys Lett 1992; 166: 435-438.
- 43 Polchinski J. Weinberg's nonlinear quantum mechanics and the Einstein–Podolsky–Rosen paradox. Phys Rev Lett 1991; 28: 397-400.
- 44 Cramer J.G. Quantum nonlocality and the possibility of superluminal effects. Proceedings of the NASA Breakthrough Propulsion. 1977. Cleveland: Physics Workshop.;
- 45 Molski M. The dual de Broglie wave. Adv Imaging Electron Phys 1998; 101: 144-239.
- 46 Stapp H. Are superluminal connections necessary?. Il Nuovo Cimento B 1977; 40: 191-204.
- 47 Feinberg G. Possibility of faster-than-light particles. Phys Rev 1967; 159: 1089-1105.
- 48 Horodecki R. Extended wave description of a massive spin-0 particles. Il Nuovo Cimento B 1988; 102: 27-32.
- 49 Zhang W.M., Feng D.H., Gilmore R. Coherent states: theory and some applications. Rev Mod Phys 1990; 62: 867-927.
- 50 Cooper I.L. A simple algebraic approach to coherent states for the Morse oscillator. J Phys A Math Gen 1992; 25: 1671-1683.
- 51 Morse P.M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 1929; 34: 57-64.
- 52 Aragone C., Guerri G., Salamo S., Tani J.L. Intelligent spin states. J Phys A Math Nucl Gen 1974; 7: L149-L151.