Homeopathy 2014; 103(04): 264-274
DOI: 10.1016/j.homp.2014.08.006
Original Paper
Copyright © The Faculty of Homeopathy 2014

Modulation of inflammation response to murine cutaneous Leishmaniasis by homeopathic medicines: Antimonium crudum 30cH

Fabiana Rodrigues de Santana
1   Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
,
Cidéli de Paula Coelho
1   Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
2   Laboratory of Veterinary Pathology, University of Santo Amaro, São Paulo, Brazil
,
Thayná Neves Cardoso
1   Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
,
Elizabeth Cristina Perez Hurtado
1   Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
3   Laboratory of Immunology, Federal University of São Paulo, São Paulo, Brazil
,
Nilson Roberti Benites
4   Veterinary and Zootechny Faculty, University of São Paulo, Brazil
,
Marcia Dalastra Laurenti
5   Faculty of Medicine, University of São Paulo, São Paulo, Brazil
,
Leoni Villano Bonamin
1   Graduate Program in Environmental and Experimental Pathology, Research Center of University Paulista, Rua Dr Bacelar, 1212 – 4th Floor, 04026-002 São Paulo, Brazil
2   Laboratory of Veterinary Pathology, University of Santo Amaro, São Paulo, Brazil
› Author Affiliations

Subject Editor:
Further Information

Publication History

Received09 February 2014
revised25 July 2014

accepted27 August 2014

Publication Date:
02 January 2018 (online)

Background: Leishmaniasis is a zoonotic disease caused by protozoan parasites of the mononuclear phagocytic system. The modulation activity of these cells can interfere in the host/parasite relationship and influences the prognosis.

Methods: We evaluated the effects of the homeopathic preparation Antimonium crudum 30cH on experimental infection induced by Leishmania (L.) amazonensis. Male Balb/c mice were inoculated with 2 × 106 Leishmania (L.) amazonensis promastigotes into the footpad and, after 48 h (acute phase) or 60 days (chronic phase), cell population of lymphocytes and phagocytes present in the peritoneal washing fluid and spleen were analyzed by flow cytometry and histopathology, with histometry of the subcutaneous primary lesion, local lymph node and spleen. Immunohistochemistry was performed to quantify CD3 (T lymphocyte), CD45RA (B lymphocyte) and CD11b (phagocytes) positive cells.

Results: In treated mice, during the acute phase, there was significant increase of the macroscopic lesion, associated to inflammatory edema, as well increase in the number of free amastigotes and B lymphocytes inside the lesion. Increase of B lymphocytes (predominantly B-2 cells) was also seen in the local lymph node, spleen and peritoneum. In the chronic phase, the inflammatory process in the infection focus was reduced, with reduced phagocyte migration and peritoneal increase of B-1a cells (precursors of B-2 immunoglobulin producers cells) and T CD8+ cells.

Conclusion: The treatment of mice with Antimonium crudum 30cH induced a predominantly B cell pattern of immune response in Leishmania (L.) amazonensis experimental infection, alongside the increase of free amastigote forms number in the infection site. The clinical significance of this study is discussed, further studies are suggested.

 
  • References

  • 1 Croft S.L., Sundar S., Fairlamb A.H. Drug resistance in leishmaniasis. Clin Microbiol Rev 2006; 19: 111-126.
  • 2 Gumy A., Louis J.A., Launois P. The murine model of infection with Leishmania major and its importance for the deciphering of mechanisms underlying differences in Th cell differentiation in mice from different genetic backgrounds. Int J Parasitol 2004; 34: 433-444.
  • 3 Silveira F.T., Lainson R., Gomes C.M.C., Laurenti M.D., Corbett C.E.P. Immunopathogenic competences of Leishmania (V.) braziliensis and Leishmania (L.) amazonensis in American cutaneous leishmaniasis. Parasite Immunol 2009; 31: 423-431.
  • 4 Silveira F.T., Müller S.R., De Souza A.A.A. et al. Revisão sobre a Patogenia da Leishmaniose Tegumentar Americana na Amazônia, com ênfase à doença causada por Leishmania (V.) braziliensis e Leishmania (L.) amazonensis . Rev Para Med 2008; 22: 9-20.
  • 5 Consuelo V.D., Craft N. Cutaneous and mucocutaneous leishmaniasis. Dermatol Ther 2009; 22: 491-502.
  • 6 Oliveira L.F., Schubach A.O., Martins M.M. et al. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop 2011; 118: 87-96.
  • 7 Tuon F.F., Amato V.S., Graf M.E., Siqueira A.M., Nicodemo A.C., Amato Neto V. Treatment of New World cutaneous leishmaniasis – a systematic review with a meta-analysis. Int J Dermatol 2008; 47: 109-124.
  • 8 Kedzierski L., Sakthianandeswaren A., Curtis J.M., Andrews P.C., Junk P.C., Kedzierska K. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem 2009; 16: 599-614.
  • 9 Amato V.S., Tuon F.F., Siqueira A.M., Nicodemo A.C., Amato Neto V. Treatment of Mucosal Leishmaniasis in Latin America: systematic review. Am J Trop Med Hyg 2007; 77: 266-274.
  • 10 Frézard F., Demicheli C., Ribeiro R. Pentavalent antimonials: new perspectives for old drugs. Molecules 2009; 14: 2317-2336.
  • 11 Pierantozzi M., Roura X., Paltrinieri S., Poggi M., Zatelli A. Variation of proteinuria in dogs with leishmaniasis with meglumine antimoniate and allopurinol: a retrospective study. J Am Anim Hosp Assoc 2013; 49: 231-236.
  • 12 Carrió J., Portús M. In vitro susceptibility to pentavalent antimony in Leishmania infantum strains is not modified during in vitro or in vivo passages but is modified after host treatment with meglumine antimoniate. BMC Pharmacol 2002; 2: 1471-2210.
  • 13 Da Silva S.M., Amorim I.F., Ribeiro R.R. et al. Efficacy of combined therapy with liposome-encapsulated meglumine antimoniate and allopurinol in treatment of canine visceral leishmaniasis. Antimicrob Agents Chemother 2012; 56: 2858-2867.
  • 14 Kocyigit A., Gur S., Gurel M.S., Bulut V., Ulukanligil M. Antimonial therapy induces circulating proinflammatory cytokines in patients with cutaneous leishmaniasis. Infect Immun 2002; 70: 6589-6591.
  • 15 Masmoudi A., Hariz W., Marrekchi S., Amouri M., Turki H. Old world cutaneous leishmaniasis: diagnosis and treatment. J Dermatol Case Rep 2013; 7: 31-41.
  • 16 Rocha M.N., Nogueira P.M., Demicheli C. et al. Cytotoxicity and in vitro antileishmanial activity of antimony (v), bismuth (v), and tin (iv) complexes of lapachol. Bioinorg Chem Appl 2013; 2013: 1-7.
  • 17 Sereno D., Holzmuller P., Mangot I., Cuny G., Ouaissi A., Lesmere J.L. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother 2001; 45: 2064-2069.
  • 18 Rodrigues K.A.F., Amorim L.V., De Oliveira J.M.G. et al. Eugenia uniflora essential oil as a potential anti-leishmania agent: effects on Leishmania amazonensis and possible mechanisms of action. Ev Based Complement Altern Med 2013; 2013: 279726.
  • 19 Colares A.V., Almeida-Souza F., Taniwaki N.N. et al. In vitro antileishmanial of essential oil of Vanillosmopsis arbórea (Asteraceae) Baker. Ev Based Complement Altern Med 2013; 2013: 727042.
  • 20 García M., Monzote L., Montalvo A.M., Scull R. Screening of medicinal plants against Leishmania amazonensis . Pharm Biol 2010; 48: 1053-1058.
  • 21 Dos Santos A.O., Ueda-Nakamura T., Prado Dias Filho B., Veiga-Junior V.F., Nakamura C.V. Copaiba oil: an alternative to development of new drugs against Leishmaniasis. Ev Based Complement Altern Med 2012; 2012: 898419.
  • 22 Dos Santos A.O., Costa M.A., Ueda-Nakamura T. et al. Leishmania amazonensis: effect of oral treatment with copaíba oil in mice. Exp Parasitol 2011; 129: 145-151.
  • 23 Smit E., Oberholzer H.M., Pretorius E. A review of immunomodulators with reference to Canova. Homeopathy 2009; 98: 169-176.
  • 24 Aleixo D.L., Ferraz F.N., Ferreira E.C. et al. Highly diluted medication reduces parasitemia and improves experimental infection evolution by Trypanosoma cruzi . BMC Res Notes 2012; 5: 352.
  • 25 Pereira W.K., Lonardoni M.V., Grespan R., Caparroz-Assef S.M., Cuman R.K., Bersani-Armado C.A. Immunomodulatory effect of Canova medication on experimental Leishmania amazonensis infection. J Infect 2005; 51: 157-164.
  • 26 Ferraz F.N., Simoni G.K., Nascimento A. et al. Different forms of administration of biotherapy 7 dH in mice experimentally infected by Trypanosoma cruzi produce different effects. Homeopathy 2011; 100: 237-243.
  • 27 De Almeida L.R., Campos M.C.O., Herrera H.M., Bonamin L.V., Fonseca A.H. Effects of homeopathy in mice experimentally infected with Trypanosoma cruzi . Homeopathy 2008; 97: 65-69.
  • 28 Lira-Salazar G., Marines-Montiel E., Torres-Monzón J., Hernández-Hérnandez F., Salas-Benito J.S. Effects of homeopathic medications Eupatorim perfoliatum and Arsenicum album on parasitemia of Plasmodium berghei-infected mice. Homeopathy 2006; 95: 223-228.
  • 29 Rettagliati A., Pisseri F., Tomassini R. Application of the “method of complexity” in veterinary homeopathy: a case study of Rex the dog suffering from leishmaniasis. Ann Eur J Integr Med 2012; 2012: 167-168.
  • 30 Low G. Intravenous injections of Antimonium tartaratum in Kala-Azar. Br Med J 1919; 7: 702-704.
  • 31 Adler U.C., Ambrosio E., Anelli M., Capello E., De Toledo Cesar E., Guimarães E.C.A. A strict definition of homeopathy according to Hahnemann. Br Homeopath J 1996; 85: 79-82.
  • 32 Ullman D. Controlled clinical trials evaluating the homeopathic treatment of people with human immunodeficiency virus or acquired immune deficiency syndrome. J Altern Complement Med 2003; 9: 133-141.
  • 33 Sunila E.S., Kuttan G., Preethi K.C., Ramadasan K. Effect of homeopathic medicines on transplanted tumors in mice. Asian Pac J Cancer Prev 2007; 8: 390-394.
  • 34 Kassab S., Cummings M., Berkovitz S., Van Haselen R., Fisher P. Homeopathic medicines for adverse effects of cancer treatments. Cochrane Database Syst Rev 2009; 15: 004845.
  • 35 Siqueira C.M., Costa B., Amorim A.M. et al. H3N2 homeopathic influenza vírus solution modifies cellular and biochemical aspects of MDCK and J774G8 cell lines. Homeopathy 2013; 102: 31-40.
  • 36 Bonamin L.V., Sato C., Zalla Neto R. et al. Immunomodulation of homeopathic thymulin 5 CH in a BCG-induced granuloma model. Ev Based Complement Altern Med 2013; 2013: 686018.
  • 37 Bonamin L.V., De Moraes C.L., Sanches F. et al. Rats born to mothers treated with dexamethasone 15 cH present changes in modulation of inflammatory process. Ev Based Complement Altern Med 2012; 2012: 710923.
  • 38 Sato C., Listar V.G., Bonamin L.V. Development of broiler chickens after treatment with thymulin 5 cH: a zoo technical approach. Homeopathy 2012; 101: 68-73.
  • 39 Kawakami A.P., Sato C., Cardoso T.N., Bonamin L.V. Inflammatory process modulation by homeopathic Arnica Montana 6 cH. The role of individual variation. Ev Based Complement Altern Med 2011; 2011: 917541.
  • 40 Bonamin L.V., Endler P.C. Animal models for studying homeopathy and high dilutions: conceptual critical review. Homeopathy 2010; 99: 37-50.
  • 41 Bonamin L.V. Signals and Images. Contributions and Contradictions about High Dilution Research. 1st edn Dordrecht: Springer Publisher; 2008: 3-22.
  • 42 Demarque D., Jouanny J., Poitevin B., Saint-Jean Y. Farmacologia & Matéria Médica Homeopática. 1st edn São Paulo: Organon Publisher; 2009: 58-61.
  • 43 Santana FR, Coelho CP, Cardoso TN, Laurenti MD, Hurtado ECP, Bonamin LV. Modulation of inflammation response to murine cutaneous leishmaniosis by homeopathic medicines: Thymulin 5cH. Homeopathy; (in this issue).
  • 44 Jütte R., Riley D. A review of the use and role of low potencies in homeopathy. Complement Ther Med 2005; 13: 291-296.
  • 45 Barthelmann J., Nietsch J., Blessenohl M. et al. The protective Th1 response in mice is induced in the T-cell zone only three weeks after infection with Leishmania major and not during early T-cell activation. Med Microbiol Immunol 2012; 201: 25-35.
  • 46 Yatawara L., Wickramasinghe S., Nagataki M. et al. Aureobasidium-derived soluble branched (1,3-1,6) beta-glucan (Sophy beta-glucan) enhances natural killer activity in Leishmania amazonensis-infected mice. Korean J Parasitol 2009; 47: 345-351.
  • 47 Vaz N.M., Pordeus V. Visiting Immunology. Arq Bras Cardiol 2005; 85: 350-362.
  • 48 Ortolani R., Bellavite P., Paiola F. et al. A comparative method for processing immunological parameters: developing an Immunogram. Blood Transfus 2010; 8: 118-125.
  • 49 Bellavite P., Conforti A., Pontarollo F., Ortolani R. Immunology and Homeopathy. 2. Cells of the Immune System an Inflammation. Ev Based Complement Altern Med 2006; 3: 13-24.
  • 50 Bellavite P., Olioso D., Marzotto M., Moratti E., Conforti A. A dynamic network model of the similia principle. Complement Ther Med 2013; 21: 750-761.
  • 51 Babai B., Louzir H., Cazenave P.A., Dellagi K. Depletion of peritoneal CD5+ B cells has no effect on the course of Leishmania major infection in susceptible and resistant mice. Clin Exp Immunol 1999; 117: 123-129.
  • 52 Rodriguez-Pinto D. B cells as antigen presenting cells. Cell Immunol 2005; 238: 67-75.
  • 53 Nurieva R.I., Chung Y. Understanding the development and function of T follicular helper cells. Cell Mol Immunol 2010; 7: 190-197.
  • 54 Moore J.W.J., Beattie L., Dalton J.E. et al. B cell: T cell interactions occur within hepatic granulomas during experimental visceral leishmaniasis. Plos One 2012; 7: 1-14.
  • 55 Ronet C., Voigt H., Himmelrich H. et al. Leishmania major-specific B cells are necessary for Th2 cell development and susceptibility to L. major LV39 in babl/c mice. J Immunol 2008; 180: 4825-4835.
  • 56 Bankoti R., Gupta K., Levchenko A., Stäger S. Marginal zone B cells regulate antigen-specific T cell responses during infection. J Immunol 2012; 188: 3961-3971.
  • 57 Gibson-Corley K.N., Boggiatto P.M., Bockenstedt M.M., Petersen C.A., Waldschmidt T.J., Jones J.E. Promotion of a functional B cell germinal center response after Leishmania species co-infection is associated with lesion resolution. Am J Pathol 2012; 180: 2009-2017.
  • 58 Wanasen N., Xin L., Soong L. Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection. Int J Parasitol 2008; 38: 417-429.
  • 59 Hoerauf A., Solbach W., Röllinghoff M., Gessner A. Effect of IL-7 treatment on Leishmania major – infected Balb.Xid mice: enhanced lymphopoiesis with sustained lack of B-1 cell and clinical aggravation of disease. Int Immunol 1995; 7: 1879-1884.
  • 60 Ritter U., Frischknecht F., Zandbergen G.V. Are neutrophils important host cells for Leishmania parasites?. Trends Parasitol 2009; 25: 505-510.
  • 61 Shapira M., Zinoviev A. Leishmania parasites act as a Trojan horse that paralyzes the translation system of host macrophages. Cell Host Microbe 2011; 9: 257-269.
  • 62 Barcinski M.A., Dos Reis G.A. Apoptosis in parasites and parasite-induced apoptosis in the host immune system: a new approach to parasitic diseases. Braz J Med Biol Res 1999; 32: 395-401.
  • 63 Wanderley J.L., Pinto da Silva L.H., Deolindo P. et al. Cooperation between apoptotic and viable metacyclics enhances the pathogenesis of Leishmaniasis. PLoS One 2009; 4: 5733.
  • 64 Lecoeur H., Giraud E., Prévost M.C., Milon G., Lang T. Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes. PLoS Negl Trop Dis 2013; 7: 2276.
  • 65 Moreira P.R., Bandarra M.B., Magalhães G.M. et al. Influence of apoptosis on the cutaneous and peripheral lymph node inflammatory response in dogs with visceral leishmaniasis. Vet Parasitol 2013; 192: 149-157.
  • 66 O'Garra A., Chang R., Go N., Hasting R., Haughton G., Howard M. Ly-1 B (B-1) cell are the main source of B cell-derived interleukin 10. Eur J Immunol 1992; 22: 711-717.
  • 67 Cabral S.M.R., Silvestre R.L., Santarém N.M., Tavares J.C., Silva A.F., Cordeiro-da-Silva A.A.C. Leishmania infantum cytosolic tryparedoxin activates B cells to secrete interleukin-10 and specific immunoglobulin. Immunology 2008; 123: 555-565.
  • 68 Ronet C., Hauyon-La Torre Y., Revaz-Breton M. et al. Regulatory B cells shape the development of Th2 Immune Responses in BALB/c mice infected with Leishmania major through IL-10 production. J Immunol 2010; 184: 886-894.
  • 69 Felizardo T.C., Gaspar-Elsas M.I.C., Lima G.M.C.A., Abrahamsohn I.A. Lack of signaling by IL-4 or by IL-4/IL-13 has more attenuating effects on Leishmania amazonensis dorsal skin-than on footpad-infected mice. Exp Parasitol 2012; 130: 48-57.