Ultraschall Med 2020; 41(06): 618-645
DOI: 10.1055/a-1246-5984
Continuing Medical Education

Emergency Ocular Ultrasound – Common Traumatic and Non-Traumatic Emergencies Diagnosed with Bedside Ultrasound

Augenultraschall in der Notfallmedizin – Diagnose häufiger traumatischer und nichttraumatischer Notfälle durch Sonografie am Krankenbett
Beatrice Hoffmann
1   Department of Emergency Medicine, Division of Emergency Ultrasound, Beth Israel Deaconess Medical Center, Boston, United States
,
Jesse M. Schafer
1   Department of Emergency Medicine, Division of Emergency Ultrasound, Beth Israel Deaconess Medical Center, Boston, United States
,
2   Department Allgemeine Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland
› Author Affiliations

Abstract

Point-of-care ocular ultrasound (POCOUS) in the ambulatory and critical care setting has become an invaluable diagnostic tool for patients presenting with traumatic or atraumatic vision and ocular complaints. Sonographic bedside evaluation is intuitive and easy to perform and can accurately diagnose a variety of pathologies. These include detachment or hemorrhage of the retina or vitreous, lens dislocation, retrobulbar hematoma or air, as well as ocular foreign bodies, infections, tumors, and increased optic nerve sheath diameter that can be assessed in the setting of suspected increased intracranial pressure. The ocular anatomy is easy to visualize with sonography, as the eye is a superficial structure filled with fluid. Over the last two decades, a large number of scientific publications have documented that POCOUS in emergent or critical care settings is an accurate diagnostic tool and expands and improves emergency diagnosis and management. This article will review POCOUS exam techniques as well as normal sonographic findings and common pathologies.

Zusammenfassung

Der okuläre Point-of-Care-Ultraschall (POCOUS) hat sich im ambulanten und intensivmedizinischen Bereich zu einer unschätzbaren diagnostischen Methode für Patienten mit traumatischen oder nichttraumatischen Sehstörungen und Augenbeschwerden entwickelt. Die sonografische Auswertung am Krankenbett ist intuitiv und einfach durchzuführen und kann eine Vielzahl von Pathologien genau diagnostizieren. Dazu gehören Ablösung oder Blutung der Netzhaut oder des Glaskörpers, Linsenluxation, retrobulbäres Hämatom oder Luft sowie Fremdkörper des Auges, Infektionen, Tumoren und ein erhöhter Durchmesser der Sehnervenscheide, die bei Verdacht auf einen erhöhten Hirndruck beurteilt werden können. Die Anatomie des Auges ist mit der Sonografie leicht zu visualisieren, da das Auge eine oberflächliche Struktur ist, die mit Flüssigkeit gefüllt ist. In den letzten 2 Jahrzehnten wurde in zahlreichen wissenschaftlichen Publikationen dokumentiert, dass POCOUS in der Notfall- oder Intensivmedizin ein treffsicheres diagnostisches Verfahren ist und die Notfalldiagnose und -behandlung erweitert und verbessert. In diesem Artikel werden POCOUS-Untersuchungsmethoden sowie normale sonografische Befunde und häufige Pathologien beschrieben.



Publication History

Article published online:
08 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Haring RS, Canner JK, Haider AH. et al. Ocular injury in the United States: Emergency department visits from 2006–2011. Injury 2016; 47: 104-108
  • 2 Stagg BC, Shah MM, Talwar N. et al. Factors Affecting Visits to the Emergency Department for Urgent and Nonurgent Ocular Conditions. Ophthalmology 2017; 124: 720-729
  • 3 McNicholas MM, Brophy DP, Power WJ. et al. Ocular sonography. Am J Roentgenol 1994; 163: 921-926
  • 4 Gandhi K, Shyy W, Knight S. et al. Point-of-care ultrasound for the evaluation of non-traumatic visual disturbances in the emergency department: The VIGMO protocol. Am J Emerg Med 2019; 37: 1547-1553
  • 5 Khattab E, Hoffmann B, Schafer J. et al. Examiner Position in Ocular Point-of-Care Ultrasound: A Proposed Technique. J Emerg Med 2019; 56: 684-686
  • 6 Herman BA, Harris GR. Theoretical study of steady-state temperature rise within the eye due to ultrasound insonation. IEEE Trans Ultrason Ferroelectr Freq Control 1999; 46: 1566-1574
  • 7 Harris GR. Safety Considerations for Diagnostic Ultrasound in the Eye. J Ultrasound Med 2019; 38: 1163-1165
  • 8 Kollmann C, Jenderka KV, Moran CM. et al. EFSUMB Clinical Safety Statement for Diagnostic Ultrasound – (2019 revision). Ultraschall in Med 2020; 41: 387-389
  • 9 Barnett SB, Ter Haar GR, Ziskin MC. et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol 2000; 26: 355-366
  • 10 Seguin J, Le CK, Fischer JW. et al. Ocular Point-of-Care Ultrasound in the Pediatric Emergency Department. Pediatr Emerg Care 2019; 35: e53-e58
  • 11 Roque PJ, Hatch N, Barr L. et al. Bedside ocular ultrasound. Crit Care Clin 2014; 30: 227-241
  • 12 Lahham S, Shniter I, Thompson M. et al. Point-of-Care Ultrasonography in the Diagnosis of Retinal Detachment, Vitreous Hemorrhage, and Vitreous Detachment in the Emergency Department. JAMA Netw Open 2019; 2: e192162
  • 13 Tandon A, Khullar T, Bhatt S. Sonography in acute ocular pathology: a kaleidoscopic view. Emerg Radiol 2019; 26: 241-248
  • 14 Budhram G, Cronsell J, Schroeder M. et al. Mobile vitreous opacities on ocular ultrasonography are not always pathologic: a cross-sectional survey in an asymptomatic population. Am J Emerg Med 2015; 33: 1808-1813
  • 15 Harries A, Shah S, Teismann N. et al. Ultrasound assessment of extraocular movements and pupillary light reflex in ocular trauma. Am J Emerg Med 2010; 28: 956-959
  • 16 Garcia Jr JP, Garcia PM, Rosen RB. Optic nerve measurements by 3D ultrasound-based coronal “C-scan” imaging. Ophthalmic Surg Lasers Imaging. 2005; 36: 142-146
  • 17 Lieb WE, Cohen SM, Merton DA. et al. Color Doppler imaging of the eye and orbit. Technique and normal vascular anatomy. Arch Ophthalmol 1991; 109: 527-531
  • 18 Guthoff RF, Berger RW, Winkler P. et al. Doppler ultrasonography of the ophthalmic and central retinal vessels. Arch Ophthalmol 1991; 109: 532-536
  • 19 Lieb WE, Flaharty PM, Sergott RC. et al. Color Doppler imaging provides accurate assessment of orbital blood flow in occlusive carotid artery disease. Ophthalmology 1991; 98: 548-552
  • 20 Ojaghi Haghighi SH, Morteza Begi HR, Sorkhabi R. et al. Diagnostic Accuracy of Ultrasound in Detection of Traumatic Lens Dislocation. Emerg (Tehran) 2014; 2: 121-124
  • 21 Ritchie JV, Horne ST, Perry J. et al. Ultrasound triage of ocular blast injury in the military emergency department. Mil Med 2012; 177: 174-178
  • 22 Shiver SA, Lyon M, Blaivas M. Detection of metallic ocular foreign bodies with handheld sonography in a porcine model. J Ultrasound Med 2005; 24: 1341-1346
  • 23 Kilker BA, Holst JM, Hoffmann B. Bedside ocular ultrasound in the emergency department. Eur J Emerg Med 2014; 21: 246-253
  • 24 Arnaiz J, Marco de Lucas E, Piedra T. et al. Intralenticular intraocular foreign body after stone impact: CT and US findings. Emerg Radiol 2006; 12: 237-239
  • 25 McIlrath ST, Blaivas M, Lyon M. Diagnosis of periorbital gas on ocular ultrasound after facial trauma. Am J Emerg Med 2005; 23: 517-520
  • 26 Frasure SE, Saul T, Lewiss RE. Bedside ultrasound diagnosis of vitreous hemorrhage and traumatic lens dislocation. Am J Emerg Med 2013; 31: 1002, e1001–1002
  • 27 Schott ML, Pierog JE, Williams SR. Pitfalls in the use of ocular ultrasound for evaluation of acute vision loss. J Emerg Med 2013; 44: 1136-1139
  • 28 Shinar Z, Chan L, Orlinsky M. Use of ocular ultrasound for the evaluation of retinal detachment. J Emerg Med 2011; 40: 53-57
  • 29 Gottlieb M, Holladay D, Peksa GD. Point-of-Care Ocular Ultrasound for the Diagnosis of Retinal Detachment: A Systematic Review and Meta-Analysis. Acad Emerg Med 2019; 26: 931-939
  • 30 Tayal VS, Neulander M, Norton HJ. et al. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med 2007; 49: 508-514
  • 31 Tsung JW, Blaivas M, Cooper A. et al. A rapid noninvasive method of detecting elevated intracranial pressure using bedside ocular ultrasound: application to 3 cases of head trauma in the pediatric emergency department. Pediatr Emerg Care 2005; 21: 94-98
  • 32 Robba C, Santori G, Czosnyka M. et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 2018; 44: 1284-1294
  • 33 Kimberly HH, Shah S, Marill K. et al. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 2008; 15: 201-204
  • 34 Soldatos T, Chatzimichail K, Papathanasiou M. et al. Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J 2009; 26: 630-634
  • 35 Singleton J, Dagan A, Edlow JA. et al. Real-time optic nerve sheath diameter reduction measured with bedside ultrasound after therapeutic lumbar puncture in a patient with idiopathic intracranial hypertension. Am J Emerg Med 2015; 33: 860, e865–867
  • 36 Robba C, Cardim D, Tajsic T. et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study. PLoS Med 2017; 14: e1002356
  • 37 Rajajee V, Vanaman M, Fletcher JJ. et al. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care 2011; 15: 506-515
  • 38 Moretti R, Pizzi B. Optic nerve ultrasound for detection of intracranial hypertension in intracranial hemorrhage patients: confirmation of previous findings in a different patient population. J Neurosurg Anesthesiol 2009; 21: 16-20
  • 39 Hassen GW, Bruck I, Donahue J. et al. Accuracy of optic nerve sheath diameter measurement by emergency physicians using bedside ultrasound. J Emerg Med 2015; 48: 450-457
  • 40 Ohle R, McIsaac SM, Woo MY. et al. Sonography of the Optic Nerve Sheath Diameter for Detection of Raised Intracranial Pressure Compared to Computed Tomography: A Systematic Review and Meta-analysis. J Ultrasound Med 2015; 34: 1285-1294
  • 41 Gottlieb M, Bailitz J. Can Ocular Ultrasonography Be Used to Assess Intracranial Pressure?. Ann Emerg Med 2016; 68: 349-351
  • 42 Shah S, Kimberly H, Marill K. et al. Ultrasound techniques to measure the optic nerve sheath: is a specialized probe necessary?. Med Sci Monit 2009; 15: MT63-MT68
  • 43 Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension II. Patient study. Pediatr Radiol 1996; 26: 706-710
  • 44 Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. I. Experimental study. Pediatr Radiol 1996; 26: 701-705
  • 45 Du J, Deng Y, Li H. et al. Ratio of Optic Nerve Sheath Diameter to Eyeball Transverse Diameter by Ultrasound Can Predict Intracranial Hypertension in Traumatic Brain Injury Patients: A Prospective Study. Neurocrit Care 2020; 32: 478-485
  • 46 Kim DH, Jun JS, Kim R. Ultrasonographic measurement of the optic nerve sheath diameter and its association with eyeball transverse diameter in 585 healthy volunteers. Sci Rep 2017; 7: 15906
  • 47 Watanabe A, Kinouchi H, Horikoshi T. et al. Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg 2008; 109: 255-258
  • 48 Raghunandan N, Joseph M, Nithyanandam S. et al. Role of ultrasonographic optic nerve sheath diameter in the diagnosis and follow-up of papilledema and its correlation with Frisen's severity grading. Indian J Ophthalmol 2019; 67: 1310-1313
  • 49 Till P. [Ultrasonic diagnosis of retrobulbar hematomas]. Klin Monbl Augenheilkd 1971; 158: 723-727
  • 50 Harrie RP, Digre KB. Nontraumatic subperiosteal orbital hemorrhage during labor. Ophthalmology 2001; 108: 1937-1938
  • 51 Reith W. [Traumatic lesions of the orbit]. Radiologe 2008; 48: 1150-1154
  • 52 Ojaghihaghighi S, Lombardi KM, Davis S. et al. Diagnosis of Traumatic Eye Injuries With Point-of-Care Ocular Ultrasonography in the Emergency Department. Ann Emerg Med 2019; 74: 365-371
  • 53 Forrest CR, Lata AC, Marcuzzi DW. et al. The role of orbital ultrasound in the diagnosis of orbital fractures. Plast Reconstr Surg 1993; 92: 28-34
  • 54 Pinto A, Brunese L, Daniele S. et al. Role of computed tomography in the assessment of intraorbital foreign bodies. Semin Ultrasound CT MR 2012; 33: 392-395
  • 55 Yeargin KA, Tolson DR. Ocular foreign body. J Emerg Med 2005; 28: 77-78
  • 56 Ustymowicz A, Krejza J, Mariak Z. Twinkling artifact in color Doppler imaging of the orbit. J Ultrasound Med 2002; 21: 559-563
  • 57 McNicholas MM, Brophy DP, Power WJ. et al. Ocular trauma: evaluation with US. Radiology 1995; 195: 423-427
  • 58 Johari M, Ghavimi MA, Mahmoudian H. et al. A comparable study of the diagnostic performance of orbital ultrasonography and CBCT in patients with suspected orbital floor fractures. Dentomaxillofac Radiol 2016; 45: 20150311
  • 59 Adeyemo WL, Akadiri OA. A systematic review of the diagnostic role of ultrasonography in maxillofacial fractures. Int J Oral Maxillofac Surg 2011; 40: 655-661
  • 60 Kohanim S, Daniels AB, Huynh N. et al. Utility of ocular ultrasonography in diagnosing infectious endophthalmitis in patients with media opacities. Semin Ophthalmol 2012; 27: 242-245
  • 61 Marchini G, Pagliarusco A, Tosi R. et al. Ultrasonographic findings in endophthalmitis. Acta Ophthalmol Scand 1995; 73: 446-449
  • 62 Michelson G, Gierth K, Priem R. et al. Blood velocity in the ophthalmic artery in normal subjects and patients with endophthalmitis. Invest Ophthalmol Vis Sci 1990; 31: 1919-1923
  • 63 Hassen GW, Sweeney B, Portillo T. et al. Anterior chamber depth measurement using ultrasound to assess elevated intraocular pressure. Am J Emerg Med 2015; 33: 860, e861–863
  • 64 Chiao L, Sharipov S, Sargsyan AE. et al. Ocular examination for trauma; clinical ultrasound aboard the International Space Station. J Trauma 2005; 58: 885-889