Subscribe to RSS
DOI: 10.1055/a-1300-3453
Investigations on the 1,2-Hydrogen Atom Transfer Reactivity of Alkoxyl Radicals under Visible-Light-Induced Reaction Conditions
Financial support was provided by the National Natural Science Foundation of China (91753126, 21622207) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20020200).
Published as part of the Cluster Radicals – by Young Chinese Organic Chemists
Abstract
The alkoxyl radicals have demonstrated superior hydrogen atom transfer reactivity in organic synthesis due to the strong oxygen–hydrogen bond dissociation energy. However, only the intermolecular hydrogen atom transfer (HAT) and intramolecular 1,5-HAT have been widely studied and synthetically utilized for C(sp3)–H functionalization. This Account summarizes our investigations on the unusual 1,2-HAT reactivity of alkoxyl radicals under visible-light-induced reaction conditions for the α-C–H functionalization. Various mechanistic investigations were discussed in this Account to address three key questions to validate the 1,2-HAT reactivity of alkoxyl radicals.
1 Introduction
2 Could Aldehydes/Ketones Be the Sole Reaction Intermediate for the α-C–H Allylation? NO
3 Is the Alkoxyl Radical Absolutely Involved in the Reaction? YES
4 Does the 1,2-HAT of Alkoxyl Radicals Irrefutably Exist? YES
5 Conclusion
Key words
alkoxyl radical - 1,2-HAT - C–H functionalization - photoredox catalysis - N-alkoxylphthalimide - N-alkoxylpyridinium saltSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1300-3453.
- Supporting Information
Publication History
Received: 18 September 2020
Accepted after revision: 29 October 2020
Accepted Manuscript online:
29 October 2020
Article published online:
02 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Surez E, Rodriguez MS. In Radicals in Organic Synthesis, Vol. 2 . Philippe R, Sibi MP. Wiley-VCH; Weinheim: 2001: 440
- 1b Cekovic Z. J. Serb. Chem. Soc. 2005; 70: 287
- 1c Chiba S, Chen H. Org. Biomol. Chem. 2014; 12: 4051
- 2 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
- 3a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
- 3b Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076
- 4 Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895
- 5 Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 1872
- 6 Kim S, Lee TA, Song Y. Synlett 1998; 471
- 7a Martín A, Rodríguez MS, Suárez E. Tetrahedron Lett. 1999; 40: 7525
- 7b Sartillo-Piscil F, Vargas M, Anaya de Parrodi C, Quintero L. Tetrahedron Lett. 2003; 44: 3919
- 7c Martín A, Quintanal LM, Suárez E. Tetrahedron Lett. 2007; 48: 5507
- 7d Martín A, Pérez-Martín I, Quintanal LM, Suárez E. Tetrahedron Lett. 2008; 49: 5179
- 7e Hernández-García L, Quintero L, Sánchez M, Sartillo-Piscil F. J. Org. Chem. 2007; 72: 8196
- 7f Francisco CG, León EI, Martín A, Moreno P, Rodríguez MS, Suárez E. J. Org. Chem. 2001; 66: 6967
- 7g Zlotorzynska M, Zhai H, Sammis GM. Org. Lett. 2008; 10: 5083
- 7h Zhu H, Wickenden JG, Campbell NE, Leung JC. T, Johnson KM, Sammis GM. Org. Lett. 2009; 11: 2019
- 7i Sánchez-Eleuterio A, Quintero L, Sartillo-Piscil F. J. Org. Chem. 2011; 76: 5466
- 7j Rueda-Becerril M, Leung JC. T, Dunbar CR, Sammis GM. J. Org. Chem. 2011; 76: 7720
- 7k Zhu H, Leung JC. T, Sammis GM. J. Org. Chem. 2015; 80: 965
- 8 Zlotorzynska M, Sammis GM. Org. Lett. 2011; 13: 6264
- 9a Wang C, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 13495
- 9b Zhang J, Li Y, Xu R, Chen Y. Angew. Chem. Int. Ed. 2017; 56: 12619
- 9c Ito Y, Kimura A, Osawa T, Hari Y. J. Org. Chem. 2018; 83: 10701
- 9d Han JB, Guo A, Tang XY. Chem. Eur. J. 2019; 25: 2989
- 9e Shi JL, Wang Z, Zhang R, Wang Y, Wang J. Chem. Eur. J. 2019; 25: 8992
- 10 Zhang J, Liu D, Liu S, Ge Y, Lan Y, Chen Y. iScience 2020; 23: 100755
- 11 Qi L, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 13312
- 12 Zhong LJ, Wang HY, Ouyang XH, Li JH, An DL. Chem. Commun. 2020; 56: 8671
- 13a Capaldo L, Ravelli D. Chem. Commun. 2019; 55: 3029
- 13b He F.-S, Ye S, Wu J. ACS Catal. 2019; 9: 8943
- 13c Rossler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew. Chem. Int. Ed. 2020; 59: 9264
- 14a Kim I, Park B, Kang G, Kim J, Jung H, Lee H, Baik MH, Hong S. Angew. Chem. Int. Ed. 2018; 57: 15517
- 14b Bao X, Wang Q, Zhu J. Chem. Eur. J. 2019; 25: 11630
- 14c Bao X, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2019; 58: 2139
- 14d Barthelemy AL, Tuccio B, Magnier E, Dagousset G. Angew. Chem. Int. Ed. 2018; 57: 13790
- 14e Barthelemy A.-L, Tuccio B, Magnier E, Dagousset G. Synlett 2019; 30: 1489
- 14f Kim Y, Lee K, Mathi GR, Kim I, Hong S. Green Chem. 2019; 21: 2082
- 15 Hu C, Chen Y. Org. Chem. Front. 2015; 2: 1352