Diabetologie und Stoffwechsel 2021; 16(04): 306-320
DOI: 10.1055/a-1310-2736
Übersicht

AGP und Ernährung – Mit CGM postprandiale Glukoseverläufe analysieren

AGP and Nutrition – Analysing postprandial glucose courses with CGM
Jens Kroeger
1   Diabetologie, Zentrum für Diabetologie Hamburg-Bergedorf, Hamburg, Germany
,
Thorsten Siegmund
2   Diabetes-, Hormon- und Stoffwechselzentrum, Diabetes-, Hormon- und Stoffwechselzentrum, Privatpraxis am Isar Klinikum, München, Germany
,
Oliver Schubert
3   Ärztehaus am ZOB, Diabetes Schwerpunktpraxis, Buxtehude, Germany
,
Winfried Keuthage
4   Diabetes und Ernährungsmedizin, Schwerpunktpraxis für Diabetes und Ernährungsmedizin, Münster, Germany
,
Melanie Lettmann
5   Diabetes und Ernährungsmedizin, ehemals Schwerpunktpraxis für Diabetes und Ernährungsmedizin, Münster, Germany
,
Katja Richert
6   Endokrinologie, Diabetologie und Angiologie, Klinik für Endokrinologie, Diabetologie und Angiologie, München, Klinik Bogenhausen, München, Germany
,
Andreas Pfeiffer
7   Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
› Author Affiliations
Supported by: Abbott GmbH

Zusammenfassung

Ernährungstherapien zählen zu den Grundlagen eines effektiven Diabetesmanagements bei Menschen sowohl mit Typ-1-, als auch mit Typ-2-Diabetes. Auch für Menschen mit Prädiabetes oder Adipositas sind Lebensstilinterventionen, einschließlich Ernährungsempfehlungen, Bestandteil der grundlegenden Therapie. Es wird empfohlen, die Ernährung individuell an die persönlichen Umstände, Präferenzen und metabolischen Ziele anzupassen. Im Zeitalter der Digitalisierung finden mHealth-Interventionen, beispielsweise in Form von kontinuierlich Glukose messenden Systemen (CGM), vermehrt Einzug in die Ernährungstherapie. Das ambulante Glukoseprofil (AGP) zeigt eine strukturierte und grafische Zusammenstellung der durch CGM gewonnenen Daten. Nach einer Bewertung der glykämischen Situation (Hypoglykämien, Variabilität und Stabilität der Glukosewerte) kann das AGP auch als Unterstützung bezüglich einer Ernährungsanpassung dienen. Ziel dieser Publikation ist es, eine allgemeine Übersicht über die Ernährungsempfehlungen, speziell in Deutschland, zu ermöglichen und den Nutzen kontinuierlicher Glukosemessungen in Bezug auf Ernährung zu beschreiben.

Abstract

Nutritional therapies are one of the fundamentals of effective diabetes management, both for people with type 1 and type 2 diabetes. Lifestyle interventions, including nutritional recommendations, are also part of the basic therapy for people with pre-diabetes or obesity. It is recommended that the diet should be individually adapted to personal circumstances, preferences and metabolic goals. In the age of digitalisation, mHealth interventions, like continuous glucose monitoring systems (CGM), are increasingly finding their way into nutrition therapy. The ambulatory glucose profile (AGP) shows a structured and graphical compilation of the data obtained by CGM. After an assessment of the glycaemic situation (hypoglycaemia, variability and stability of glucose levels), the AGP can also be used as a support for dietary adjustment. The aim of this publication is to provide a general overview of nutritional recommendations, especially in Germany, and to describe the benefits of continuous glucose measurements in regard to nutrition.



Publication History

Received: 11 November 2020

Accepted: 09 March 2021

Article published online:
13 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Vaccaro O, Ruth KJ, Stamler J. Relationship of postload plasma glucose to mortality with 19-yr follow-up. Comparison of one versus two plasma glucose measurements in the Chicago Peoples Gas Company Study. Diabetes Care 1992; 15: 1328-1334
  • 2 Liu S, Willett WC, Stampfer MJ. et al A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 2000; 71: 1455-1461
  • 3 DECODE Study Group. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet (London, England) 1999; 354: 617-621
  • 4 Shaw JE, Hodge AM, de Courten M. et al Isolated post-challenge hyperglycaemia confirmed as a risk factor for mortality. Diabetologia 1999; 42: 1050-1054
  • 5 Tominaga M, Eguchi H, Manaka H. et al Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 1999; 22: 920-924
  • 6 Balkau B, Shipley M, Jarrett RJ. et al High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care 1998; 21: 360-367
  • 7 Hanefeld M, Fischer S, Julius U. et al Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996; 39: 1577-1583
  • 8 Barrett-Connor E, Ferrara A. Isolated postchallenge hyperglycemia and the risk of fatal cardiovascular disease in older women and men. The Rancho Bernardo Study. Diabetes Care 1998; 21: 1236-1239
  • 9 Deutsche Adipositas Gesellschaft, Deutsche Diabetes Gesellschaft, Deutsche Gesellschaft für Ernährung. et al Interdisziplinäre Leitlinie der Qualtität S3 zur "Prävention und Therapie der Adipositas". In: 2014
  • 10 Hauner H, Moss A, Berg A. et al. Praxisempfehlung der DDG: Adipositas und Diabetes mellitus. Diabetologie und Stoffwechsel 2019; 14: S167-S187
  • 11 Deutsche Gesellschaft für Ernährung. Evidenzbasierte Leitlinie – Kohlenhydratzufuhr und Prävention ausgewählter ernährungsmitbedingter Krankheiten. In: 2011
  • 12 Cosentino F, Grant PJ, Aboyans V. et al 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. European heart journal 2020; 41: 255-323
  • 13 Franz MJ, MacLeod J, Evert A. et al Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. J Acad Nutr Diet 2017; 117: 1659-1679
  • 14 Burch E, Ball L, Somerville M. et al Dietary intake by food group of individuals with type 2 diabetes mellitus: A systematic review. Diabetes research and clinical practice 2018; 137: 160-172
  • 15 Burch E, Williams LT, Makepeace H. et al. How Does Diet Change with A Diagnosis of Diabetes? Protocol of the 3D Longitudinal Study. Nutrients 2019; 11
  • 16 Ball L, Davmor R, Leveritt M. et al Understanding the nutrition care needs of patients newly diagnosed with type 2 diabetes: a need for open communication and patient-focussed consultations. Aust J Prim Health 2016; 22: 416-422
  • 17 Castro-Sanchez AE, Avila-Ortiz MN. Changing dietary habits in persons living with type 2 diabetes. J Nutr Educ Behav 2013; 45: 761-766
  • 18 Hamdy O, Barakatun-Nisak MY. Nutrition in Diabetes. Endocrinology and metabolism clinics of North America 2016; 45: 799-817
  • 19 Wolpert HA, Atakov-Castillo A, Smith SA. et al Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care 2013; 36: 810-816
  • 20 Muller AM, Alley S, Schoeppe S. et al The effectiveness of e-& mHealth interventions to promote physical activity and healthy diets in developing countries: A systematic review. Int J Behav Nutr Phys Act 2016; 13: 109
  • 21 Pal K, Eastwood SV, Michie S. et al Computer-based interventions to improve self-management in adults with type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2014; 37: 1759-1766
  • 22 Holmen H, Torbjornsen A, Wahl AK. et al A Mobile Health Intervention for Self-Management and Lifestyle Change for Persons With Type 2 Diabetes, Part 2: One-Year Results From the Norwegian Randomized Controlled Trial RENEWING HEALTH. JMIR Mhealth Uhealth 2014; 2: e57
  • 23 Alonso-Dominguez R, Garcia-Ortiz L, Patino-Alonso MC. et al. Effectiveness of A Multifactorial Intervention in Increasing Adherence to the Mediterranean Diet among Patients with Diabetes Mellitus Type 2: A Controlled and Randomized Study (EMID Study). Nutrients 2019; 11
  • 24 Deutsche Diabetes Gesellschaft. S3-Leitlinie Therapie des Typ-1-Diabetes. In: 2013
  • 25 Haak T, Gölz S, Fritsche A. et al. Praxisempfehlung der DDG: Therapie des Typ 1 Diabetes. Diabetologie und Stoffwechsel 2019; 14: S142-S152
  • 26 Deutsche Gesellschaft für Ernährung. Vollwertig essen und trinken nach den 10 Regeln der DGE. In: 2017 10. Auflage ed.
  • 27 Gabel M. AGP-Fibel – Das ambulante Glukoseprofil strukturiert auswerten. Kirchheim-Verlag; 2018
  • 28 Kröger J, Siegmund T, Schubert O. et al. AGP-Fibel Ernährung – Mit CGM postprandiale Glukoseverläufe analysieren. Mainz: Kirchheim Verlag; 2020
  • 29 Kulzer B, Albus C, Herpertz S. et al S2-Leitlinie Psychosoziales und Diabetes. In: 2013
  • 30 Nationale Versorgungsleitlinie. Therapie des Typ-2-Diabetes. In: Deutsche Diabetes Gesellschaft u. a.; 2013
  • 31 Landgraf R, Aberle J, Birkenfeld AL. et al. Praxisempfehlung der DDG: Therapie des Typ 2 Diabetes. Diabetologie und Stoffwechsel 2019; 14: S167-S187
  • 32 Franz MJ. Diabetes Nutrition Therapy: Effectiveness, Macronutrients, Eating Patterns and Weight Management. Am J Med Sci 2016; 351: 374-379
  • 33 Fujiwara Y, Eguchi S, Murayama H. et al Relationship between diet/exercise and pharmacotherapy to enhance the GLP-1 levels in type 2 diabetes. Endocrinology, Diabetes & Metabolism 2019; 2: e00068
  • 34 Deutsche Diabetes Gesellschaft. Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Alter. 2018
  • 35 Zeyfang A, Wernecke J, Bahrmann A. Praxisempfehlung der DDG: Diabetes mellitus im Alter. Diabetologie und Stoffwechsel 2019; 14: S207-S213
  • 36 Navaneethan SD. The KDIGO Diabetes Guidelines – Implications for the practicing nephrologist. In: 2020
  • 37 Deutsche Diabetes Gesellschaft, Deutsche Gesellschaft für Gynäkologie und Geburtshilfe. S3-Leitlinie Gestationsdiabetes mellitus (GDM), Diagnostik, Therapie und Nachsorge. In: 2018
  • 38 Schäfer-Graf U, Laubner K, Hummel S. et al. Praxisempfehlung der DDG: Gestationsdiabetes mellitus (GDM), Diagnostik, Therapie und Nachsorge. Diabetologie und Stoffwechsel 2019; 14: S167-S187
  • 39 Deutsche Diabetes Gesellschaft. Ernährungsempfehlungen zur Behandlung des Diabetes mellitus – Empfehlungen zur Proteinzufuhr. 2015
  • 40 Lean ME, Leslie WS, Barnes AC. et al Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet (London, England) 2018; 391: 541-551
  • 41 Mann JI, De Leeuw I, Hermansen K. et al Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutrition, metabolism, and cardiovascular diseases: NMCD 2004; 14: 373-394
  • 42 Ahlqvist E, Storm P, Karajamaki A. et al Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 2018; 6: 361-369
  • 43 Evert AB, Dennison M, Gardner CD. et al Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42: 731-754
  • 44 Deutsche Diabetes Gesellschaft. Stellungnahme des Ausschuss Ernährung der DDG zum Consensus Report: Nutrition Therapy for Adults with Diabetes or Prediabetes. In: 2019
  • 45 Pfeiffer AF, Gebauer S, Rubin D. et al. Ernährungsempfehlungen zur Behandlung des Diabetes mellitus – Empfehlungen zur Proteinzufuhr. Diabetes und Stoffwechsel 2016; 11: 272-278
  • 46 Esposito K, Chiodini P, Maiorino MI. et al Which diet for prevention of type 2 diabetes? A meta-analysis of prospective studies. Endocrine 2014; 47: 107-116
  • 47 Esposito K, Maiorino MI, Bellastella G. et al A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ open 2015; 5: e008222
  • 48 Pan B, Wu Y, Yang Q. et al The impact of major dietary patterns on glycemic control, cardiovascular risk factors, and weight loss in patients with type 2 diabetes: A network meta-analysis. J Evid Based Med 2019; 12: 29-39
  • 49 Schwingshackl L, Chaimani A, Hoffmann G. et al A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol 2018; 33: 157-170
  • 50 Schlesinger S, Neuenschwander M, Schwedhelm C. et al Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Advances in nutrition (Bethesda, Md) 2019; 10: 205-218
  • 51 Azadbakht L, Fard NR, Karimi M. et al Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care 2011; 34: 55-57
  • 52 de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med 2019; 381: 2541-2551
  • 53 Furmli S, Elmasry R, Ramos M. et al. Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Rep 2018; 2018
  • 54 Carter S, Clifton PM, Keogh JB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes research and clinical practice 2016; 122: 106-112
  • 55 Wheeler ML, Dunbar SA, Jaacks LM. et al Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care 2012; 35: 434-445
  • 56 Sucher S, Markova M, Hornemann S. et al Comparison of the effects of diets high in animal or plant protein on metabolic and cardiovascular markers in type 2 diabetes: A randomized clinical trial. Diabetes, obesity & metabolism 2017; 19: 944-952
  • 57 Stocker RK, Reber Aubry E, Bally L. et al [Ketogenic Diet and its Evidence-Based Therapeutic Implementation in Endocrine Diseases]. Praxis (Bern 1994) 2019; 108: 541-553
  • 58 Bolla AM CA, Laurenzi A, Scavini M. et al. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients 2019; 11 (05) 962
  • 59 Vega-Lopez S, Venn BJ, Slavin JL. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 2018; 10
  • 60 Jenkins DJ, Wolever TM, Taylor RH. et al Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34: 362-366
  • 61 Jenkins DJ, Jenkins AL, Wolever TM. et al Starchy foods and fiber: reduced rate of digestion and improved carbohydrate metabolism. Scand J Gastroenterol Suppl 1987; 129: 132-141
  • 62 Brand-Miller JC, Stockmann K, Atkinson F. et al Glycemic index, postprandial glycemia, and the shape of the curve in healthy subjects: analysis of a database of more than 1,000 foods. Am J Clin Nutr 2009; 89: 97-105
  • 63 Matthan NR, Ausman LM, Meng H. et al Estimating the reliability of glycemic index values and potential sources of methodological and biological variability. Am J Clin Nutr 2016; 104: 1004-1013
  • 64 Solomon TPJ, Tarry E, Hudson CO. et al Immediate post-breakfast physical activity improves interstitial postprandial glycemia: a comparison of different activity-meal timings. Pflugers Archiv: European journal of physiology 2020; 472: 271-280
  • 65 Kröger J. AGP-Folien Ernährung. In: Kirchheim Verlag; 2020
  • 66 Kessler K, Hornemann S, Petzke KJ. et al The effect of diurnal distribution of carbohydrates and fat on glycaemic control in humans: a randomized controlled trial. Sci Rep 2017; 7: 44170
  • 67 Zeevi D, Korem T, Zmora N. et al Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015; 163: 1079-1094
  • 68 Weickert MO, Mohlig M, Schofl C. et al Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care 2006; 29: 775-780
  • 69 Weickert MO, Pfeiffer AFH. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J Nutr 2018; 148: 7-12
  • 70 Shukla AP, Dickison M, Coughlin N. et al The impact of food order on postprandial glycaemic excursions in prediabetes. Diabetes, obesity & metabolism 2019; 21: 377-381
  • 71 Bell KJ, Smart CE, Steil GM. et al Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care 2015; 38: 1008-1015
  • 72 Paterson MA, Smart CE, Lopez PE. et al Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Diabet Med 2016; 33: 592-598
  • 73 Wolever TM, Mullan YM. Sugars and fat have different effects on postprandial glucose responses in normal and type 1 diabetic subjects. Nutrition, metabolism, and cardiovascular diseases: NMCD 2011; 21: 719-725
  • 74 Garcia-Lopez JM, Gonzalez-Rodriguez M, Pazos-Couselo M. et al Should the amounts of fat and protein be taken into consideration to calculate the lunch prandial insulin bolus? Results from a randomized crossover trial. Diabetes Technol Ther 2013; 15: 166-171
  • 75 Lodefalk M, Aman J, Bang P. Effects of fat supplementation on glycaemic response and gastric emptying in adolescents with Type 1 diabetes. Diabet Med 2008; 25: 1030-1035
  • 76 Paterson M, Bell KJ, O'Connell SM. et al The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 Diabetes: Implications for Intensive Diabetes Management. Current diabetes reports 2015; 15: 61
  • 77 Klupa T, Benbenek-Klupa T, Matejko B. et al The impact of a pure protein load on the glucose levels in type 1 diabetes patients treated with insulin pumps. International journal of endocrinology 2015; 2015: 216918
  • 78 Jiang P, Turek FW. Timing of meals: when is as critical as what and how much. American journal of physiology Endocrinology and metabolism 2017; 312: E369-E380
  • 79 Allison KC, Goel N. Timing of eating in adults across the weight spectrum: Metabolic factors and potential circadian mechanisms. Physiol Behav 2018; 192: 158-166
  • 80 Kessler K, Pivovarova-Ramich O. Meal Timing, Aging, and Metabolic Health. International journal of molecular sciences 2019; 20: 1911
  • 81 Carroll KF, Nestel PJ. Diurnal variation in glucose tolerance and in insulin secretion in man. Diabetes 1973; 22: 333-348
  • 82 Tato F, Tato S, Beyer J. et al. Circadian variation of basal and postprandial insulin sensitivity in healthy individuals and patients with type-1 diabetes. Diabetes Res 1991; 17: 13-24
  • 83 American Diabetes Association. 5. Prevention or Delay of Type 2 Diabetes. Diabetes Care 2017; 40: S44-S47
  • 84 Gallwitz B. Implications of postprandial glucose and weight control in people with type 2 diabetes: understanding and implementing the International Diabetes Federation guidelines. Diabetes Care 2009; 32 (Suppl. 02) S322-S325
  • 85 Blaak EE, Antoine JM, Benton D. et al Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 2012; 13: 923-984
  • 86 Cavalot F, Pagliarino A, Valle M. et al Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: lessons from the San Luigi Gonzaga Diabetes Study. Diabetes Care 2011; 34: 2237-2243
  • 87 Hiyoshi T, Fujiwara M, Yao Z. Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes. J Biomed Res 2017;
  • 88 O'Keefe JH, Gheewala NM, O'Keefe JO. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol 2008; 51: 249-255
  • 89 Shiraiwa T, Kaneto H, Miyatsuka T. et al Postprandial hyperglycemia is a better predictor of the progression of diabetic retinopathy than HbA1c in Japanese type 2 diabetic patients. Diabetes Care 2005; 28: 2806-2807
  • 90 Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care 2003; 26: 881-885
  • 91 American Diabetes Association. Postprandial blood glucose. American Diabetes Association. Diabetes Care 2001; 24: 775-778
  • 92 Madsbad S. Impact of postprandial glucose control on diabetes-related complications: How is the evidence evolving?. Journal of diabetes and its complications 2016; 30: 374-385
  • 93 Gorst C, Kwok CS, Aslam S. et al Long-term Glycemic Variability and Risk of Adverse Outcomes: A Systematic Review and Meta-analysis. Diabetes Care 2015; 38: 2354-2369
  • 94 Battelino T, Danne T, Bergenstal RM. et al Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019; 42: 1593-1603
  • 95 Lu J, Ma X, Zhou J. et al Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes. Diabetes Care 2018; 41: 2370-2376
  • 96 Beck RW, Bergenstal RM, Riddlesworth TD. et al Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care 2019; 42: 400-405
  • 97 Mayeda L, Katz R, Ahmad I. et al Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ open diabetes research & care 2020; 8: e000991
  • 98 Kröger J, Reichel A, Siegmund T. et al. Praxisbezogene Empfehlungen zum Ambulanten Glukoseprofil. Diabetologie und Stoffwechsel 2018; 13: 174-183
  • 99 Thomas A, Kolassa R, Von Sengbusch S. et al. CGM interpretieren. Mainz: Kirchheim Verlag; 2019
  • 100 Brand-Miller J, Buyken AE. The Relationship between Glycemic Index and Health. Nutrients 2020 12.
  • 101 Turati F, Galeone C, Augustin LSA. et al. Glycemic Index, Glycemic Load and Cancer Risk: An Updated Meta-Analysis. Nutrients 2019; 11
  • 102 Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Current diabetes reviews 2013; 9: 25-53
  • 103 Kröger J, Reichel A, Siegmund T. et al Praxisbezogene Empfehlungen zum Ambulanten Glukoseprofil. Diabetologie und Stoffwechsel 2018; 13: 174-183
  • 104 Ceriello A, Esposito K, Piconi L. et al Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress Than Mean Glucose in Normal and Type 2 Diabetic Patients. J Diabetes 2008; 57: 1349-1354
  • 105 Soupal J, Skrha Jr J, Fajmon M. et al Glycemic variability is higher in type 1 diabetes patients with microvascular complications irrespective of glycemic control. Diabetes Technol Ther 2014; 16: 198-203
  • 106 Kuricová K, Pácal L, Šoupal J. et al Effect of glucose variability on pathways associated with glucotoxicity in diabetes: Evaluation of a novel in vitro experimental approach. Diabetes research and clinical practice 2016; 114: 1-8
  • 107 Evert AB, Boucher JL, Cypress M. et al Nutrition Therapy Recommendations for the Management of Adults With Diabetes. Diabetes Care 2014; 37: S120-S143
  • 108 Ang M, Linn T. Comparison of the effects of slowly and rapidly absorbed carbohydrates on postprandial glucose metabolism in type 2 diabetes mellitus patients: a randomized trial. Am J Clin Nutr 2014; 100: 1059-1068
  • 109 Mignone LE, Wu T, Horowitz M. et al Whey protein: The "whey" forward for treatment of type 2 diabetes?. World journal of diabetes 2015; 6: 1274-1284
  • 110 Jakubowicz D, Wainstein J, Ahren B. et al Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes care 2015; 38: 1820-1826
  • 111 World Health Organization. Guideline: Sugar intake for adults and children. In: 2015
  • 112 Malik VS, Hu FB. Fructose and Cardiometabolic Health: What the Evidence From Sugar-Sweetened Beverages Tells Us. J Am Coll Cardiol 2015; 66: 1615-1624
  • 113 Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med 2020; 17: e1003053
  • 114 International Diabetes Federation. IDF Diabetes Atlas, 9th edn. In: Brussels, Belgium: 2019
  • 115 Bo S, Fadda M, Castiglione A. et al Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. Int J Obes (Lond) 2015; 39: 1689-1695
  • 116 Seufert J, Deiss D, Gölz S. et al Neue Therapieoptionen mit kontinuierlich gemessenen Glukosedaten – Empfehlungen für die Praxis. Diabetologie und Stoffwechsel 2019; 14: 388-398
  • 117 Zukunfsboard Digitalisierung. D.U.T – Digitalisierungs- und Technologiereport Diabetes. In: Mainz: Kirchheim Verlag + Co GmbH; 2020
  • 118 Ziegler R, Heinemann L, Freckmann G. et al. Intermittent Use of Continuous Glucose Monitoring: Expanding the Clinical Value of CGM. Journal of diabetes science and technology 2020;