Fortschr Neurol Psychiatr 2021; 89(05): 233-242
DOI: 10.1055/a-1418-8476
Übersicht

Konzepte zu Diagnose, Verlaufs- und Sturzrisikobeurteilung bei neurologischen Gangstörungen

Concepts for diagnosis, course and fall risk assessment in neurological gait disorders
Max Wuehr
1   Deutsches Schwindel- und Gleichgewichtszentrum, Ludwig-Maximilians Universität, Klinikum der Universität München
,
Nima Jooshani
1   Deutsches Schwindel- und Gleichgewichtszentrum, Ludwig-Maximilians Universität, Klinikum der Universität München
,
Roman Schniepp
1   Deutsches Schwindel- und Gleichgewichtszentrum, Ludwig-Maximilians Universität, Klinikum der Universität München
2   Neurologische Klinik, Ludwig-Maximilians Universität, Klinikum der Universität München
› Author Affiliations

Zusammenfassung

Die quantitative Ganganalyse findet zunehmend Einsatz bei der Diagnose, Verlaufsbeurteilung und Risikostratifizierung von neurologischen Gangstörungen. Dabei bleibt oft unklar, welche Messtechnik, Untersuchungsbedingungen und Gangmerkmale geeignet sind, um bestimmte klinische Fragestellungen zu beantworten. Ziel dieses Überblicksartikels ist es, allgemein anwendbare Konzepte und Strategien für die Testung, Analyse und Interpretation der Gangfunktion im klinischen Kontext vorzustellen und ihre Anwendung nah an der klinischen Praxis zu illustrieren. Der erste Abschnitt des Artikels gibt einen Überblick über derzeit verfügbare stationäre und mobile Messtechnologien, die eine Testung von Gang im klinischen Bereich und eine kontinuierliche Erfassung von Mobilität im Alltag der Patienten ermöglichen. Zudem werden Strategien zur Auswahl geeigneter Untersuchungsprotokolle diskutiert und Konzepte vorgestellt, die die Parametrisierung von Gang vereinfachen. Die anschließenden Abschnitte widmen sich konkreten klinischen Anwendungsfeldern der quantitativen Ganganalyse: Anhand von Fallbeispielen aus der aktuellen Studienliteratur wird dargestellt, (1) wie spezifische Muster des Gangbefunds Orientierungspunkte für die Differenzialdiagnose bieten und (2) wie quantitative Gangmerkmale die Früherkennung, Verlaufsbeurteilung und das Therapiemonitoring bei neurologischen Gangstörungen unterstützen können. Abschließend wird (3) der Beitrag von stationärer Gangtestung und mobiler Mobilitätserfassung für die Sturzrisikoprognose bei Patienten mit neurologischen Gangstörungen diskutiert.

Abstract

Quantitative gait assessment is increasingly applied in the diagnosis, disease monitoring, and risk stratification of neurological gait disorders. However, it is unclear, which measurement approaches, examination conditions, and gait characteristics are appropriate for answering specific clinical questions. The aim of this review was to provide generally applicable concepts and strategies for the measurement, analysis, and interpretation of gait function in the clinical context and to discuss their implementation in clinical practice. The first part of the article introduces currently available stationary and mobile measurement technologies that enable assessment of gait in clinical environments and to continuously track patients’ mobility in the context of everyday life. Furthermore, the selection of adequate examination conditions and concepts that facilitate the parametrization of gait are discussed. The subsequent parts of the article address concrete clinical fields of application for quantitative gait analysis. With the help of exemplary cases from current research, the following issues are dicussed: (1) how specific patterns in gait assessments can guide differential diagnosis; (2) how quantitative gait measures can support the early diagnosis as well as the monitoring of disease progression and intervention outcomes in neurological gait disorders and finally, (3) the contribution of stationary gait and mobile mobility assessment for fall risk prognosis in patients with neurological gait impairments.



Publication History

Article published online:
21 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Heldman DA, Espay AJ, LeWitt PA. et al. Clinician versus machine: reliability andresponsiveness of motor endpoints in Parkinson’s disease. Parkinsonism Relat Disord 2014; 20: 590-595.
  • 2 Ilg W, Seemann J, Giese M. et al. Real-life gait assessment in degenerative cerebellar ataxia: towards ecologically valid biomarkers. Neurology. 2020 10.1212/WNL.0000000000010176.
  • 3 Shah VV, McNames J, Mancini M. et al. Laboratory versus daily life gait characteristics in patients with multiple sclerosis, Parkinson’s disease, and matched controls. J Neuroeng Rehabil 2020; 17: 159.
  • 4 Lord S, Galna B, Verghese J. et al. Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol A Biol Sci Med Sci 2013; 68: 820-827.
  • 5 Wuehr M, Huppert A, Schenkel F. et al. Independent domains of daily mobility in patients with neurological gait disorders. J Neurol. 2020
  • 6 Pradhan C, Wuehr M, Akrami F. et al. Automated classification of neurological disorders of gait using spatio-temporal gait parameters. J Electromyogr Kinesiol 2015; 25: 413-422
  • 7 Snijders AH, Van De Warrenburg BP, Giladi N. et al. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol 2007; 6: 63-74
  • 8 Schniepp R, Mohwald K, Wuehr M. Gait ataxia in humans: Vestibular and cerebellar control of dynamic stability. J Neurol. 2017
  • 9 Dietrich H, Heidger F, Schniepp R. et al. Head motion predictability explains activity-dependent suppression of vestibular balance control. Sci Rep 2020; 10: 668.
  • 10 Schniepp R, Schlick C, Pradhan C. et al. The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol 2016; 263: 1409-1417.
  • 11 Overton M, Pihlsgård M, Elmståhl S. Prevalence and incidence of mild cognitive impairment across subtypes, age, and sex. Dement Geriatr Cogn Disord 2019; 47: 219-232
  • 12 Schniepp R, Wuehr M, Schöberl F. et al. Erfassung motorisch-kognitiver Interaktionen bei Demenzerkrankungen im klinischen Alltag. Fortschr Neurol Psychiatr 2016; 84: 469-479
  • 13 Lundin-Olsson L, Nyberg L, Gustafson Y. Stops walking when talking as a predictor of falls in elderly people. Lancet 1997; 349: 617
  • 14 Raccagni C, Nonnekes J, Bloem BR. et al. Gait and postural disorders in parkinsonism: A clinical approach. J Neurol 2020; 267: 3169-3176.
  • 15 Cucca A, Biagioni MC, Fleisher JE. et al. Freezing of gait in Parkinson’s disease: from pathophysiology to emerging therapies. Neurodegener Dis Manag 2016; 6: 431-446
  • 16 Schniepp R, Trabold R, Romagna A. et al. Walking assessment after lumbar puncture in normal-pressure hydrocephalus: a delayed improvement over 3 days. J Neurosurg 2016; 1-10.
  • 17 Nonnekes J, Růžička E, Serranová T. et al. Functional gait disorders. A Sign-based Approach. 2020 ; 10.1212/WNL.0000000000009649.
  • 18 Lempert T, Brandt T, Dieterich M. et al. How to identify psychogenic disorders of stance and gait. J Neurol 1991; 238: 140-146
  • 19 Schniepp R, Wuehr M, Huth S. et al. Gait characteristics of patients with phobic postural vertigo: effects of fear of falling, attention, and visual input. J Neurol 2014; 261: 738-746
  • 20 Warmerdam E, Hausdorff JM, Atrsaei A. et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 2020
  • 21 Lord S, Galna B, Rochester L. Moving forward on gait measurement: toward a more refined approach. Mov Disord 2013; 28: 1534-1543.
  • 22 Del Din S, Elshehabi M, Galna B. et al. Gait analysis with wearables predicts conversion to parkinson disease. Ann Neurol 2019; 86: 357-367.
  • 23 Ilg W, Fleszar Z, Schatton C. et al. Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov Disord 2016; 31: 1891-1900.
  • 24 Polhemus AM, Bergquist R, Bosch De Basea M. et al. Walking-related digital mobility outcomes as clinical trial endpoint measures: Protocol for a scoping review. BMJ Open 2020; 10: e038704.
  • 25 Schlachetzki JCM, Barth J, Marxreiter F. et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS One 2017; 12: e0183989.
  • 26 Wilson J, Alcock L, Yarnall AJ. et al. Gait progression over 6 years in Parkinson’s disease: effects of age, medication, and pathology. Front Aging Neurosci 2020; 12: 577435.
  • 27 Wuehr M, Nusser E, Decker J. et al. Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology 2016; 86: 2196-2202.
  • 28 Schniepp R, Wuehr M, Neuhaeusser M. et al. 4-aminopyridine and cerebellar gait: a retrospective case series. J Neurol 2012; 259: 2491-2493.
  • 29 Rochester L, Chastin SFM, Lord S. et al. Understanding the impact of deep brain stimulation on ambulatory activity in advanced Parkinson’s disease. J Neurol 2012; 259: 1081-1086
  • 30 Paul SS, Canning CG, Sherrington C. et al. Three simple clinical tests to accurately predict falls in people with Parkinson’s disease. Mov Disord 2013; 28: 655-662.
  • 31 Schniepp R, Schlick C, Schenkel F. et al. Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy. J Neurol 2017; 264: 277-283.
  • 32 Schlick C, Rasoul A, Wuehr M. et al. Gait variability predicts a subset of falls in cerebellar gait disorders. J Neurol. 2017
  • 33 Del Din S, Galna B, Godfrey A. et al. Analysis of free-living gait in older adults with and without Parkinson’s disease and with and without a history of falls: identifying generic and disease-specific characteristics. J Gerontol A Biol Sci Med Sci 2019; 74: 500-506.