RSS-Feed abonnieren
DOI: 10.1055/a-1683-6141
Visualization of the Third Ventricle, the Future Cavum Septi Pellucidi, and the Cavum Veli Interpositi at 11+3 to 13+6 Gestational Weeks on 3D Transvaginal Ultrasound Including Normative Data
Visualisierung des dritten Ventrikels, des zukünftigen Cavum septi pellucidi und von Cavum veli interpositi in den Schwangerschaftswochen 11+3 bis 13+6 im transvaginalen 3D-Ultraschall mit Erstellung von Normwerten
Abstract
Objectives To show the development of the third ventricle, commissural plate, future cavum septi pellucidi, and cavum veli interpositi in weeks 12–14 by transvaginal 3D ultrasound. Methods This is a prospective transvaginal 3D study carried out to define the third ventricle and the diencephalic midline structures surrounding it. 93 of 387 fetuses in which the commissural plate with the future cavum septi pellucidi, cavum veli interpositi, and the roof of the third ventricle could be well visualized, were selected with the choroid plexus of the third ventricle and the pituitary gland serving as leading structures. In a small number of fetuses, the optic chiasm could also be displayed. In addition, the following measurements were performed: third ventricle craniocaudal and anteroposterior, roof of the third ventricle/cavum veli interpositi, and fcsp. Results The sonomorphologic characteristics of the commissural plate, the future cavum septi pellucidi, and the cavum veli interpositi are described IN 9% OF THE FETUSES examined. Measurements of the third ventricle, cavum veli interpositi, and the roof of the third ventricle show the following results: 3rd V cc = 3.895 + 0.091*CRL mm; 3rd V ap = 4.175 + 0.036*CRL mm; CVI ap = 2.223 + 0.029*CRL mm; CVI cc = 0.139 + 0.02*CRL mm. Conclusion Transvaginal neurosonography enables visualization and measurement of the normal fetal third ventricle at 12–14 weeks of gestation including visualization of the future cavum septi pellucidi and the cavum veli interpositi. BEFORE USE IN PATIENTS CAN BE CONSIDERED, FURTHER SCIENTIFIC WORK IS REQUIRED.
Zusammenfassung
Ziele Darstellung der Entwicklung des dritten Ventrikels, der Kommissurenplatte, des zukünftigen Cavum septi pellucidi und des Cavum veli interpositi in den Wochen 12–14 mittels transvaginalem 3D-Ultraschall. Methoden Um den dritten Ventrikel und die ihn umgebenden dienzephalen Mittellinienstrukturen mittels transvaginalem 3D-Ultraschall beschreiben zu können, wurde ein prospektives Studiendesign gewählt. Dabei wurden aus 387 prospektiv untersuchten Föten 93 ausgewählt, bei denen die Kommissurenplatte sowie das zukünftige Cavum septi pellucidi, das Cavum veli interpositi bzw. das Dach des dritten Ventrikels gut dargestellt werden konnten, wobei der Plexus chorioideus des dritten Ventrikels und die Hypophyse als Leitstrukturen fungierten. Bei einer kleinen Anzahl von Feten konnte zusätzlich das Chiasma opticum dargestellt werden. Ergänzend wurden noch folgende Messungen durchgeführt: dritter Ventrikel craniocaudal und anterior posterior, Dach des dritten Ventrikels/Cavum veli interpositi und das zukünftigen Cavum septi pellucidi. Ergebnisse: Die sonomorphologischen Merkmale der Kommissurenplatte, des zukünftigen Cavum septi pellucidi und des Cavum veli interpositi können bei 9 PROZENT DER UNTERSUCHTEN FETEN klar dargestellt werden. Die Messungen des dritten Ventrikels und des Cavum veli interpositi bzw. des Daches des dritten Ventrikels ergaben folgende Ergebnissse 3.V cc = 3,895 + 0,091*CRL mm; 3.V ap = 4,175 + 0,036*CRL mm; CVI ap = 2,223 + 0,029*CRL mm; CVI cc = 0,139 + 0,02*CRL mm. Schlussfolgerung Die transvaginale Neurosonographie ermöglicht die klare Visualisierung und Messung des normalen fetalen dritten Ventrikels im Zeitraum 12 – 14 Schwangerschaftswochen einschließlich der Darstellung des zukünftigen Cavum septi pellucidi und des Cavum veli interpositi. VOR EINER ANWENDUNG AN PATIENTEN, SIND JEDOCH WEITERE WISSENSCHAFTLICHE ARBEITEN ERFORDERLICH.
Keywords
First trimester - Corpus callosum - Calum septi pellucidi - Calum veli interposti - 3rd ventriclePublikationsverlauf
Eingereicht: 01. Juli 2021
Angenommen nach Revision: 22. Oktober 2021
Artikel online veröffentlicht:
25. Februar 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Birnbaum R, Barzilay R, Brusilov M. et al. The early pattern of human corpus callosum development: A transvaginal 3D neurosonographic study. Prenat Diagn 2020; 40: 1239-1245
- 2 Raybaud C. The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology 2010; 52: 447-477
- 3 Richards LJ. Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum. Braz J Med Biol Res 2002; 35: 1431-1439
- 4 Richards LJ, Plachez C, Ren T. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 2004; 66: 276-289
- 5 Shu T, Puche AC, Richards LJ. Development of midline glial populations at the corticoseptal boundary. J Neurobiol 2003; 57: 81-94
- 6 Kappers JA. The development of the paraphysis cerebri in man with comments on its relationship to the intercolumnar tubercle and its significance for the origin of cystic tumors in the third ventricle. J Comp Neurol 1955; 102: 425-509
- 7 Hochstetter F. Beiträge zur Entwicklungsgeschichte der Kraniozerebralen Topographie des Menschen. Akademie der Wissenschaften in Wien: 1943. DOI: 10.1007/978–3-7091–9821–6.
- 8 Chen CY, Chen FH, Lee CC. et al. Sonographic characteristics of the cavum velum interpositum. AJNR Am J Neuroradiol 1998; 19: 1631-1635
- 9 Rosenbaum AE, Hawkins RL, Newton TH. The third ventricle. In: Newton TH, Potts DG. Radiology of the scull and brain Anatomy and Pathology. St. Louis: C V Mosby; 1978: 3398-3440
- 10 Altmann R, Scharnreitner I, Scheier T. et al. Sonoembryology of the fetal posterior fossa at 11 + 3 to 13 + 6 gestational weeks on three-dimensional transvaginal ultrasound. Prenat Diagn 2016; 36: 731-737
- 11 Banerjee A, Chitnis UB, Jadhav SL. et al. Hypothesis testing, type I and type II errors. Ind Psychiatry J 2009; 18: 127-131
- 12 Bayer SA, Altman J. The Human Brain During the Early First Trimester. CRC, Boca Raton 2007;
- 13 Davis SW, Ellsworth BS, Perez Millan MI. et al. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol 2013; 106: 1-47
- 14 Ikeda H, Suzuki J, Sasano N. et al. The development and morphogenesis of the human pituitary gland. Anat Embryol (Berl) 1988; 178: 327-336
- 15 Vinals F, Ruiz P, Correa F. et al. Two-dimensional visualization and measurement of the fetal optic chiasm: improving counseling for antenatal diagnosis of agenesis of the septum pellucidum. Ultrasound Obstet Gynecol 2016; 48: 733-738
- 16 Paladini D, Birnbaum R, Donarini G. et al. Assessment of fetal optic chiasm: an echoanatomic and reproducibility study. Ultrasound Obstet Gynecol 2016; 48: 727-732
- 17 Alonso I, Azumendi G, Romero M. et al. Fetal optic chiasm: three steps for visualization and measurement on routine transabdominal ultrasound. Ultrasound Obstet Gynecol 2019; 54: 135-136
- 18 Raybaud C. Corpus Callosum: Molecular Pathways in Mice and Human Dysgeneses. Neuroimaging Clin N Am 2019; 29: 445-459
- 19 Rakic P, Yakovlev PI. Development of the corpus callosum and cavum septi in man. J Comp Neurol 1968; 132: 45-72
- 20 Kier LE. The evolutionary and embryologic basis for the development and anatomy of the cavum veli interpositi. AJNR Am J Neuroradiol 2000; 21: 612-614
- 21 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159-174
- 22 Loureiro T, Ushakov F, Montenegro N. et al. Cerebral ventricular system in fetuses with open spina bifida at 11–13 weeks' gestation. Ultrasound Obstet Gynecol 2012; 39: 620-624
- 23 Lachmann R, Sodre D, Barmpas M. et al. Midbrain and falx in fetuses with absent corpus callosum at 11–13 weeks. Fetal Diagn Ther 2013; 33: 41-46
- 24 Pati M, Cani C, Bertucci E. et al. Early visualization and measurement of the pericallosal artery: an indirect sign of corpus callosum development. J Ultrasound Med 2012; 31: 231-237
- 25 Kalayci H, Tarim E, Ozdemir H. et al. Is the presence of corpus callosum predictable in the first trimester?. J Obstet Gynaecol 2018; 38: 310-315
- 26 Hochstetter F. Beitraege zur Entwicklungsgeschichte des Menschlichen Gehirns – Teil 1 und 2. Leipzig und Wien: Akademie der Wissenschaften. 1929
- 27 O‘Rahilly R, Müller F. The Embryonic Human Brain An Atlas of Developmental Stages Third Edition. 2006
- 28 Shu T, Richards LJ. Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 2001; 21: 2749-2758
- 29 Demeter S, Rosene DL, Van Hoesen GW. Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J Comp Neurol 1985; 233: 30-47
- 30 Kier EL, Truwit CL. The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 1996; 17: 1631-1641
- 31 Kier EL, Truwit CL. The lamina rostralis: modification of concepts concerning the anatomy, embryology, and MR appearance of the rostrum of the corpus callosum. AJNR Am J Neuroradiol 1997; 18: 715-722
- 32 Huang H, Xue R, Zhang J. et al. Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 2009; 29: 4263-4273
- 33 Ren T, Anderson A, Shen WB. et al. Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol 2006; 288: 191-204
- 34 Triulzi F, Baldoli C, Parazzini C. et al. Perinatal Neuroradiology. 2016
- 35 Merz E. Targeted depiction of the fetal corpus callosum with 3D-ultrasound. Ultraschall in Med 2010; 31: 441
- 36 Achiron R, Achiron A. Development of the human fetal corpus callosum: a high-resolution, cross-sectional sonographic study. Ultrasound Obstet Gynecol 2001; 18: 343-347
- 37 Birnbaum R, Parodi S, Donarini G. et al. The third ventricle of the human fetal brain: Normative data and pathologic correlation. A 3D transvaginal neurosonography study. Prenat Diagn 2018; 38: 664-672
- 38 Pashaj S, Merz E, Wellek S. Biometry of the fetal corpus callosum by three-dimensional ultrasound. Ultrasound Obstet Gynecol 2013; 42: 691-698
- 39 Pashaj S, Merz E. 3-Dimensional Ultrasound: How can the Fetal Corpus Callosum Be Demonstrated Correctly. Ultraschall in Med 2021;
- 40 Hochstetter F. Beitraege zur Entwicklungsgeschichte des Menschlichen Gehirns – Teil 1. Leipzig und Wien: Akademie der Wissenschaften. 1919
- 41 Frazer E. A Manual of Embryology: the Development of the Human Body. Nature 1932; 130: 527-527
- 42 Rosenbaum AE, Hawkins RL, Newton TH. The third ventricle. In: Newton TH, Potts DG. Radiology of the scull and brain. St. Louis: C V Mosby; 1978: 3398-3440
- 43 Kier EL, Newton TH, Potts DG. The cerebral ventricles: a phylogenetic and ontogenetic study. In: Radiology of the scull and brain. St. Louis: C. V. Mosby; 1977: 2787-2914
- 44 Rhoton Jr AL. The lateral and third ventricles. Neurosurgery 2002; 51: S207-271
- 45 D'Addario V, Pinto V, Rossi AC. et al. Cavum veli interpositi cyst: prenatal diagnosis and postnatal outcome. Ultrasound Obstet Gynecol 2009; 34: 52-54
- 46 Birnbaum R, Barzilay R, Brusilov M. et al. The normal cavum veli interpositi at 14–17 weeks: three-dimensional and Doppler transvaginal neurosonographic study. Ultrasound Obstet Gynecol 2020;
- 47 Larroche JC, Baudey J. Cavum septi lucidi, cavum Vergae, cavum veli interpositi: Cavités de la ligne médiane (Part 1 of 2). Neonatology 1961; 3: 193-213
- 48 Picard L, Leymarie F, Roland J. et al. Cavum veli interpositi. Roentgen anatomy – pathology and physiology. Neuroradiology 1976; 10: 215-220
- 49 Saba L, Anzidei M, Raz E. et al. MR and CT of brain's cava. J Neuroimaging 2013; 23: 326-335
- 50 Zellweger H, Van Epps EF. The cavum veli interpositi and its differentiation from cavum vergae. Am J Roentgenol Radium Ther Nucl Med 1959; 82: 793-805
- 51 Chaoui R, Benoit B, Mitkowska-Wozniak H. et al. Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11–13-week scan. Ultrasound Obstet Gynecol 2009; 34: 249-252
- 52 Tubbs RS, Krishnamurthy S, Verma K. et al. Cavum velum interpositum, cavum septum pellucidum, and cavum vergae: a review. Childs Nerv Syst 2011; 27: 1927-1930
- 53 Mark LP, Daniels DL, Naidich TP. et al. Anatomic moment. The septal area. AJNR Am J Neuroradiol 1994; 15: 273-276
- 54 Bayer SA. The development of the septal region in the rat. II. Morphogenesis in normal and x-irradiated embryos. J Comp Neurol 1979; 183: 107-120
- 55 Paladini D, Donarini G, Parodi S. et al. Differentiating features of posterior fossa at 12–13 weeks' gestation in fetuses with Dandy-Walker malformation and Blake's pouch cyst. Ultrasound Obstet Gynecol 2019; 53: 850-852
- 56 Altmann R, Specht C, Scharnreitner I. et al. Reference Ranges for Transvaginal Examined Fossa Posterior Structures in Fetuses from 45 to 84 mm Crown-Rump Length. Gynecol Obstet Invest 2018; 83: 375-380