Subscribe to RSS
DOI: 10.1055/a-1748-4744
Biomimetic Diels–Alder Reactions in Natural Product Synthesis: A Personal Retrospect
We acknowledge the financial supports from the National Natural Science Foundation of China (21772109 and 21971140) and the Natural Science Foundation of Beijing Municipality (M21011).
Abstract
Nature has been recognized for her super capability of constructing complex molecules with remarkable efficiency and elegancy. Among nature’s versatile synthetic toolkits, Diels–Alder reaction is particularly attractive since it allows for rapid generation of molecular complexity from simple precursors. For natural products biosynthetically formed through Diels–Alder reactions, the most straightforward way to access them should build on biomimetic Diels–Alder reactions. However, the implementation of biomimetic Diels–Alder reactions in a laboratory setting may encounter considerable challenges, particularly for those suffering from complicated reactivity and selectivity issues. Indeed, the translation of a biosynthetic hypothesis into a real biomimetic synthesis entails the orchestrated combination of nature’s inspiration and chemist’s rational design. In this Account, we will briefly summarize our recent progress on the application of biomimetic Diels–Alder reactions in natural product synthesis. As shown in the discussed stories, rational manipulation of the structures of biosynthetic precursors plays a crucial role for the successful implementation of biomimetic Diels–Alder reactions.
1 Introduction
2 Biomimetic Synthesis of Rossinone B
3 Biomimetic Synthesis of Homodimericin A
4 Biomimetic Synthesis of Polycyclic and Dimeric Xanthanolides
5 Biomimetic Synthesis of Periconiasins and Pericoannosins
6 Biomimetic Synthesis of Merocyctochalasans
7 Conclusion and Outlook
Publication History
Received: 31 December 2021
Accepted after revision: 22 January 2022
Accepted Manuscript online:
22 January 2022
Article published online:
28 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Diels O, Alder K. Justus Liebigs Ann. Chem. 1928; 460: 98
- 2a Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 2b Corey EJ. Angew. Chem. Int. Ed. 2002; 41: 1650
- 2c Nawrat CC, Moody CJ. Angew. Chem. Int. Ed. 2014; 53: 2056
- 2d Oliveira BL, Guo Z, Bernardes GJ. L. Chem. Soc. Rev. 2017; 46: 4895
- 2e Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
- 3a Stocking EM, Williams RM. Angew. Chem. Int. Ed. 2003; 42: 3078
- 3b Klas K, Tsukamoto S, Sherman DH, Williams RM. J. Org. Chem. 2015; 80: 11672
- 3c Minami A, Oikawa H. J. Antibiot. 2016; 69: 500
- 3d Jeon B.-S, Wang S.-A, Ruszczycky MW, Liu H.-W. Chem. Rev. 2017; 117: 5367
- 3e Oikawa H, Tokiwano T. Nat. Prod. Rep. 2004; 21: 321
- 4a Lam HC, Pepper HP, Sumby CJ, George JH. Angew. Chem. Int. Ed. 2017; 56: 8532
- 4b Zhang W, Ding M, Li J, Guo Z, Lu M, Chen Y, Liu L, Shen Y.-H, Li A. J. Am. Chem. Soc. 2018; 140: 4227
- 4c Quintela-Varela H, Jamieson CS, Shao Q, Houk KN, Trauner D. Angew. Chem. Int. Ed. 2020; 59: 5263
- 4d Corbin JR, Ketelboeter DR, Fernandez I, Schomaker JM. J. Am. Chem. Soc. 2020; 142: 5568
- 4e Gao Z, Zhao Y.-M. Angew. Chem. Int. Ed. 2020; 59: 7419
- 4f Wang Y, Chen B, He X, Gui J. J. Am. Chem. Soc. 2020; 142: 5007
- 5 Bao R, Zhang H, Tang Y. Acc. Chem. Res. 2021; 54: 3720
- 6a Liu B, Fu S, Zhou C. Nat. Prod. Rep. 2020; 37: 1627
- 6b Snyder SA, Kontes F. Isr. J. Chem. 2011; 51: 378
- 6c Bisai V, Bisai A. Asian J. Org. Chem. 2018; 7: 1488
- 6d Wan C, Deng J, Liu H, Bian M, Li A. Sci. China: Chem. 2014; 57: 926
- 7 Appleton DR, Chuen CS, Berridge MV, Webb VL, Copp BR. J. Org. Chem. 2009; 74: 9195
- 8 Löbermann F, Mayer P, Trauner D. Angew. Chem. Int. Ed. 2010; 49: 6199
- 9 Zhang ZY, Chen JH, Yang Z, Tang YF. Org. Lett. 2010; 12: 5554
- 10 Mevers E, Saurí J, Liu Y, Moser A, Ramadhar TR, Varlan M, Williamson RT, Martin GE, Clardy J. J. Am. Chem. Soc. 2016; 138: 12324
- 11 Feng J, Lei XQ, Guo Z, Tang YF. Angew. Chem. Int. Ed. 2017; 56: 7895
- 12a Perri ST, Dyke HJ, Moore HW. J. Org. Chem. 1989; 54: 2032
- 12b Enhsen A, Karabelas K, Heerding JM, Moore HW. J. Org. Chem. 1990; 55: 1177
- 12c Perri ST, Moore HW. J. Am. Chem. Soc. 1990; 112: 1897
- 12d Heerding JM, Moore HW. J. Org. Chem. 1991; 56: 4048
- 13 Mandai T, Nokami J, Yano T, Yoshinaga Y, Otera J. J. Org. Chem. 1984; 49: 172
- 14 Deng J, Zhou S, Zhang W, Li J, Li R, Li A. J. Am. Chem. Soc. 2014; 136: 8185
- 15 Ma D, Liu Y, Wang Z. Angew. Chem. Int. Ed. 2017; 56: 7886
- 16 Huang J, Gu Y, Guo K, Zhu L, Lan Y, Gong J, Yang Z. Angew. Chem. Int. Ed. 2017; 56: 7890
- 17 Long X, Huang Y, Long Y, Deng J. Org. Chem. Front. 2018; 5: 1152
- 18a Ren W, Bian Y, Zhang Z, Shang H, Zhang P, Chen Y, Yang Z, Luo T, Tang Y. Angew. Chem. Int. Ed. 2012; 51: 6984
- 18b Shang H, Liu J, Bao R, Cao Y, Zhao K, Xiao C, Zhou B, Hu L, Tang Y. Angew. Chem. Int. Ed. 2014; 53: 14494
- 18c Feng J, Lei XQ, Bao R, Li Y, Xiao C, Hu L, Tang Y. Angew. Chem. Int. Ed. 2017; 56: 16323
- 19a Lei XQ, Li YH, Lai Y, Hu SK, Qi C, Wang GL, Tang YF. Angew. Chem. Int. Ed. 2021; 60: 4221
- 19b Guo Z, Bao RY, Li YH, Li YS, Zhang JY, Tang YF. Angew. Chem. Int. Ed. 2021; 60: 14545
- 19c Zhang JY, Ma YM, Qiu K, Li B, Xue ZW, Tian BX, Tang YF. Org. Chem. Front. 2022; 9: 329
- 20 Lei XQ, Feng J, Liu JC, Tang YF. Chem. Asian J. 2019; 14: 1888
- 21a Kepler JA, Philip A, Lee YW, Morey MC, Carroll FI. J. Med. Chem. 1988; 31: 713
- 21b White JD, Skeean RW. J. Am. Chem. Soc. 1978; 100: 6296
- 22a Johnson MG, Foglesong RJ. Tetrahedron Lett. 1997; 38: 7003
- 22b Baidya M, Mayr H. Chem. Commun. 2008; 1792
- 22c Reddy TP, Gujral J, Roy P, Ramachary DB. Org. Lett. 2020; 22: 9653 Meanwhile, trans–cycloheptenone is also highly reactive, which can be trapped with some nucleophiles. For some references, see
- 22d Nozaki H, Kurita M, Noyori R. Tetrahedron Lett. 1968; 9: 2025
- 22e Noyori R, Kato M. Bull. Chem. Soc. Jpn. 1974; 47: 1460
- 22f Hart H, Dunkelblum E. J. Am. Chem. Soc. 1978; 100: 5141
- 23 Ramamurthy V, Venkatesan K. Chem. Rev. 1987; 87: 433
- 24a Scherlach K, Boettger D, Remme N, Hertweck C. Nat. Prod. Rep. 2010; 27: 869
- 24b Skellam E. Nat. Prod. Rep. 2017; 34: 1252
- 25 Zhang D, Ge H, Xie D, Chen R, Zou J.-h, Tao X, Dai J. Org. Lett. 2013; 15: 1674
- 26 Zhang D, Tao X, Chen R, Liu J, Li L, Fang X, Yu L, Dai J. Org. Lett. 2015; 17: 4304
- 27 Tian C, Lei XQ, Wang YH, Dong Z, Liu G, Tang YF. Angew. Chem. Int. Ed. 2016; 55: 6992
- 28 Fan Y, Zhang D, Tao X, Wang Y, Liu J, Li L, Zhao J, Yu L, He Y.-p, Dai J, Tang Y. Org. Lett. 2019; 21: 1794
- 29a Zhu HC, Chen CM, Tong QY, Zhou Y, Ye Y, Gu LH, Zhang YH. Prog. Chem. Org. Nat. Prod. 2021; 114: 1 For some key references, see
- 29b Chen C, Zhu H, Li X.-N, Yang J, Wang J, Li G, Li Y, Tong Q, Yao G, Luo Z, Xue Y, Zhang Y. Org. Lett. 2015; 17: 644
- 29c Zhu H, Chen C, Xue Y, Tong Q, Li X.-N, Chen X, Wang J, Yao G, Luo Z, Zhang Y. Angew. Chem. Int. Ed. 2015; 54: 13374
- 29d Wei G, Chen C, Tong Q, Huang J, Wang W, Wu Z, Yang J, Liu J, Xue Y, Luo Z, Wang J, Zhu H, Zhang Y. Org. Lett. 2017; 19: 4399
- 29e Zhu H, Chen C, Tong Q, Li X.-N, Yang J, Xue Y, Luo Z, Wang J, Yao G, Zhang Y. Angew. Chem. Int. Ed. 2016; 55: 3486
- 29f Zhu H, Chen C, Tong Q, Yang J, Wei G, Xue Y, Wang J, Luo Z, Zhang Y. Angew. Chem. Int. Ed. 2017; 56: 5242
- 30 Bao R, Tian C, Zhang H, Wang Z, Dong Z, Li Y, Gao M, Zhang H, Liu G, Tang Y. Angew. Chem. Int. Ed. 2018; 57: 14216
- 31a Ellerbrock P, Armanino N, Trauner D. Angew. Chem. Int. Ed. 2014; 53: 13414
- 31b Ellerbrock P, Armanino N, Ilg MK, Webster R, Trauner D. Nat. Chem. 2015; 7: 879
- 32a D’Andrea SV, Freeman JP, Szmuszkovicz J. J. Org. Chem. 1990; 55: 4356
- 32b Smith JG, Dibble PW, Sandborn RE. J. Org. Chem. 1986; 51: 3762
- 33 Lin Z, Ma X, Wei H, Li D, Gu Q, Zhu T. RSC Adv. 2015; 5: 35262
- 34a Lichman BR, O’Connor SE, Kries H. Chem. Eur. J. 2019; 25: 6864 For some examples, see
- 34b Li XJ, Zheng QF, Yin J, Liu W, Gao SH. Chem. Commun. 2017; 53: 4695
- 34c Gao L, Su C, Du X, Wang R, Chen S, Zhou Y, Liu C, Liu X, Tian R, Zhang L, Xie K, Chen S, Guo Q, Guo L, Hano Y, Shimazaki M, Minami A, Oikawa H, Huang N, Houk KN, Huang L, Dai J, Lei X. Nat. Chem. 2020; 12: 620
- 34d Gao L, Zou Y, Liu X, Yang J, Du X, Wang J, Yu X, Fan J, Jiang M, Li Y, Houk KN, Lei X. Nat. Catal. 2021; 4: 1059
For selected examples, see:
DBU could function as a strong nucleophile to react with α,β-unsaturated systems. For some representative cases, see:
For a leading review, see:
For a leading review, see: