Klinische Neurophysiologie 2022; 53(02): 107-119
DOI: 10.1055/a-1759-9988
DGKN-Updates

EMG und Neurografie – ein Update

Wilhelm Schulte-Mattler
,
Christian Bischoff

Elektromyografie (EMG) und Elektroneurografie (ENG) gelten als bewährte Methoden, deren Anfänge aber schon Jahrzehnte zurückliegen. In dieser Arbeit werden jüngere Entwicklungen beschrieben und die Rolle von EMG und ENG in wichtigen Situationen diskutiert, nämlich bei traumatische Nervenläsionen, Nervenkompressionssyndromen, Polyneuropathien, Motoneuronerkrankungen, Myopathien, neuromuskulären Transmissionsstörungen und bei muskulärer Überaktivität.

Abstract

Elektromyography (EMG) and electroneurography (ENG) are established diagnostic methods. They were developed decades ago. More recent developments in this field are reviewed in this article. With this background the role of EMG/ENG in certain situations is discussed, namely traumatic lesions of peripheral nerve, compression neuropathies, polyneuropathies, motor neurone disorders, myopathies, disorders of neuromuscular transmission, disorders with increased muscular activity.



Publication History

Article published online:
09 June 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Galvani L. De viribus electricitatis in motu musculari commentarius. Bologna: Ex Typografia Instituti Scientiarium;; 1791
  • 2 Adrian ED, Bronk DW. The discharge of impulses in motor nerve fibres. J Physiol 1929; 67: 9-151
  • 3 Buchthal F. An introduction to electromyography. København, Stockholm, Oslo: Scandinavian University Books; 1957
  • 4 Stålberg E, van Dijk H, Falck B. et al. Standards for quantification of EMG and neurography. Clin Neurophysiol 2019; 130: 1688-1729
  • 5 Stalberg E, Bischoff C, Falck B. Outliers, a way to detect abnormality in quantitative EMG. Muscle Nerve 1994; 17: 392-399
  • 6 Bischoff C, Dengler R, Glocker F. et al. Ultraschalldiagnostik peripherer Nerven – Stellungnahme der EMG-Kommission der DGKN. Klin Neurophysiol 2015; 46: 97
  • 7 AWMF. S3-Leitlinie „Versorgung peripherer Nervenverletzungen“ (06/2013) https://www.awmf.org/uploads/tx_szleitlinien/005-010l_S3_Versorgung_peripherer_Nervenverletzungen_2013-06-abgelaufen.pdf, abgerufen am 29.3.2022
  • 8 Wolf M, Baumer P, Pedro M. et al. Sciatic nerve injury related to hip replacement surgery: imaging detection by MR neurography despite susceptibility artifacts. PLoS ONE 2014; 9: e89154
  • 9 Eder M, Schulte-Mattler W, Pöschl P. Neurographic course Of Wallerian degeneration after human peripheral nerve injury. Muscle & nerve 2017; 56: 247-252
  • 10 Jürgens TP, Puchner C, Schulte-Mattler WJ. Discharge rates in electromyography distinguish early between peripheral and central paresis. Muscle Nerve 2012; 46: 591-593
  • 11 Jablecki CK, Andary MT, So YT. et al. Literature review of the usefulness of nerve conduction studies and electromyography for the evaluation of patients with carpal tunnel syndrome. AAEM Quality Assurance Committee. Muscle Nerve 1993; 16: 1392-1414
  • 12 Löscher WN, Auer-Grumbach M, Trinka E. et al. Comparison of second lumbrical and interosseus latencies with standard measures of median nerve function across the carpal tunnel: a prospective study of 450 hands. J Neurol 2000; 247: 530-534
  • 13 Pimentel BFR, Faloppa F, Tamaoki MJS. et al. Effectiveness of ultrasonography and nerve conduction studies in the diagnosing of carpal tunnel syndrome: Clinical trial on accuracy. BMC Musculoskelet Disord 2018; 19: 115
  • 14 AWMF. S3-Leitlinie „Diagnostik und Therapie des Kubitaltunnelsyndroms“ (11/2017) https://www.awmf.org/uploads/tx_szleitlinien/005-009l_S3_Kubitaltunnelsyndrom-Diagnostik-Therapie_2018-02.pdf, abgerufen am 29.3.2022
  • 15 Kurver A, Smolders J, Verhagen WIM. et al. The diagnostic sensitivity for ulnar neuropathy at the elbow is not increased by addition of needle emg of adm and fdi when nerve conduction studies are normal. Front Neurol 2019; 10: 196
  • 16 Omejec G, Podnar S. Utility of nerve conduction studies and ultrasonography in ulnar neuropathies at the elbow of different severity. Clin Neurophysiol 2020; 131: 1672-1677
  • 17 England JD, Gronseth GS, Franklin G. et al. Distal symmetric polyneuropathy: a definition for clinical research: report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2005; 64: 199-207
  • 18 Hanewinckel R, Drenthen J, van Oijen M. et al. Prevalence of polyneuropathy in the general middle-aged and elderly population. Neurology 2016; 87: 1892-1898
  • 19 Ginsberg MR, Morren JA. Utility of electrodiagnostic studies in patients referred with a diagnosis of polyneuropathy. Muscle Nerve 2020; 61: 288-292
  • 20 Hopf HC, Esslen E. Hrsg Elektromyographie: Lehrbuch und Atlas. Stuttgart: Thieme; 1974
  • 21 Busch V, Schulte-Mattler WJ. Differentiation between uniform and non-uniform motor nerve conduction slowing. Clin Neurophysiol 2010; 121: 890-894
  • 22 Feinberg DM, Preston DC, Shefner JM. et al. Amplitude-dependent slowing of conduction in amyotrophic lateral sclerosis and polyneuropathy. Muscle Nerve 1999; 22: 937-940
  • 23 Vrancken AF, Franssen H, Wokke JH. et al. Chronic idiopathic axonal polyneuropathy and successful aging of the peripheral nervous system in elderly people. Arch Neurol 2002; 59: 533-540
  • 24 Zis P, Sarrigiannis PG, Rao DG. et al. Chronic idiopathic axonal polyneuropathy: a systematic review. J. Neurol 2016; 263: 1903-1910
  • 25 Lehmann HC, Wunderlich G, Fink GR. et al. Diagnosis of peripheral neuropathy. Neurol. Res. Pract. 2020; 2: 20
  • 26 Schulte-Mattler W. Conduction velocity distribution. In: Kimura J, Hrsg. Neurophysiology of peripheral nerve diseases. Amsterdam: Elsevier; 2006: 405-419
  • 27 Thaisetthawatkul P, Logigian EL, Herrmann DN. Dispersion of the distal compound muscle action potential as a diagnostic criterion for chronic inflammatory demyelinating polyneuropathy. J Neurol Sci 2002; 205: 59-63
  • 28 Schulte-Mattler WJ, Müller T, Georgiadis D. et al. Length dependence of variables associated with temporal dispersion in human motor nerves. Muscle Nerve 2001; 24: 527-533
  • 29 Elzenheimer E, Laufs H, Schulte-Mattler W. et al. Signal modeling and simulation of temporal dispersion and conduction block in motor nerves. IEEE Trans Biomed Eng 2020; 67: 2094-2102
  • 30 Mesin L, Lingua E, Cocito D. Motor nerve conduction block estimation in demyelinating neuropathies by deconvolution. Bioengineering 2022; 9: 23
  • 31 Shefner JM, Al-Chalabi A, Baker MR. et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol 2020; 131: 1975-1978
  • 32 van Asseldonk JTH, van den Berg LH, Kalmijn S. et al. Axon loss is an important determinant of weakness in multifocal motor neuropathy. J Neurol Neurosurg Psychiatry 2006; 77: 743-747
  • 33 Dengler R. Die Rolle des Nadel-EMG in der modernen Myopathiediagnostik. Klin Neurophysiol 2021; 131: 1662
  • 34 Sieb J, Kraner S, Steinlein O. et al. Kongenitale Myasthenie-Syndrome. Klin. Neurophysiol 2000; 31: 148-154
  • 35 Hatanaka Y, Oh SJ. Ten-second exercise is superior to 30-second exercise for post-exercise facilitation in diagnosing Lambert-Eaton myasthenic syndrome. Muscle Nerve 2008; 37: 572-575
  • 36 Calvo NE, Ferrara JM. Diagnosis of orthostatic tremor using smartphone accelerometry. BMC Neurol 2021; 21: 457
  • 37 Bischoff C, Schulte-Mattler W. Das EMG-Buch: EMG und periphere Neurologie in Frage und Antwort. 5. Aufl Stuttgart: Thieme; 2021