Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(06): 622-628
DOI: 10.1055/a-1874-2406
DOI: 10.1055/a-1874-2406
cluster
Chemical Synthesis and Catalysis in India
Acridine-Based SNS–Ruthenium Pincer Complex-Catalyzed Borrowing Hydrogen-Mediated C–C Alkylation Reaction: Application to the Guerbet Reaction
This work is financially supported by SERB (CRG/2021/000402).

Abstract
SNS-based ruthenium pincer catalysts were applied in a Guerbet condensation reaction of primary alcohols to give β-alkylated dimeric alcohols in good yields. The ability of these complexes to convert ethanol into butanol was also investigated. The work was then extended toward the C-alkylation of secondary alcohols with primary alcohols to give α-alkylated ketones. Several control experiments showed the involvement of borrowing hydrogen in the protocol.
Key words
borrowing hydrogen reaction - ruthenium catalysis - alcohols - Guerbet reaction - ketones - butanolSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1874-2406.
- Supporting Information
Publication History
Received: 20 April 2022
Accepted after revision: 12 June 2022
Accepted Manuscript online:
12 June 2022
Article published online:
08 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Guerbet M. C. R. Hebd. Seances Acad. Sci. 1899; 128: 511
- 2 Cadogan DF, Howick CJ. In Kirk–Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 19. Kroschwitz J. I., Howe-Grant M., Wiley/Interscience; New York: 1991.
- 3a Hwang HS, Erhan SZ. Ind. Crops Prod. 2006; 23: 311
- 3b Mueller G, Bongardt F, Daute P. US 5578558, 1996
- 3c Geleynse S, Brandt K, Garcia-Perez M, Wolcott M, Zhang X. ChemSusChem 2018; 11: 3728
- 4 O’Lenick AJ. Jr. J. Surfactants Deterg. 2001; 4: 311
- 5 Surfactants in Personal Care Products and Decorative Cosmetics, 3rd Ed. Rhein LD, Schlossman M, O’Lenick AJ, Somasundaran P. CRC Press; Boca Raton: 2007
- 6 Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ. Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. Science 2006; 311: 484
- 7 Cannizzaro S. Justus Leibigs Ann. Chem. 1853; 88: 129
- 8a Tischtschenko W. Zh. Russ. Fiz.-Khim. O-va. 1906; 38: 355
- 8b Tischtschenko W. Chem. Zentralbl. 1906; 77: 1309
- 9 Gabriëls D, Hernández WY, Sels B, Van Der Voort P, Verberckmoes A. Catal. Sci. Technol. 2015; 5: 3876
- 10a Gunanathan C, Milstein D. Science 2013; 341: 1229712
- 10b Paul B, Maji M, Chakrabarti K, Kundu S. Org. Biomol. Chem. 2020; 18: 2193
- 10c Waiba S, Maji B. ChemCatChem 2020; 12: 1891
- 10d Nielsen M, Junge H, Kammer A, Beller M. Angew. Chem. Int. Ed. 2012; 51: 5711
- 10e Nielsen M, Kammer A, Cozzula D, Junge H, Gladiali S, Beller M. Angew. Chem. Int. Ed. 2011; 50: 9593
- 11a Guillena G, Ramón DJ, Yus M. Chem. Rev. 2010; 110: 1611
- 11b Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
- 11c Corma A, Navas J, Sabater MJ. Chem. Rev. 2018; 118: 1410
- 11d Filonenko GA, van Putten R, Hensen EJ, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
- 11e Reed-Berendt BG, Polidano K, Morrill LC. Org. Biomol. Chem. 2019; 17: 1595
- 12a Kohlpaintner C, Schulte M, Falbe J, Lappe P, Weber J, Frey GD. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley; Chichester: 2000.
- 12b Pruett RL, Smith JA. J. Org. Chem. 1969; 34: 327
- 13a Veibel S, Nielsen JI. Tetrahedron 1967; 23: 1723
- 13b Miller RE, Bennett GE. Ind. Eng. Chem. 1961; 53: 33
- 13c Carlini C, Macinai A, Raspolli Galletti AM, Sbrana G. J. Mol. Catal. A: Chem. 2004; 212: 65
- 14 Falbe J, Bahrmann H, Lipps W, Mayer D, Freyu GD. In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed. Wiley; Chichester: 2006.
- 15a Gregorio G, Pregaglia GF, Ugo R. J. Organomet. Chem. 1972; 37: 385
- 15b Burk PL, Pruett RL, Campo KS. J. Mol. Catal. 1985; 33: 1
- 15c Burk PL, Pruett RL, Campo KS. J. Mol. Catal. 1985; 33: 15
- 16a Matsu-ura T, Sakaguchi S, Obora Y, Ishii Y. J. Org. Chem. 2006; 71: 8306
- 16b Koda K, Matsu-ura T, Obora Y, Ishii Y. Chem. Lett. 2009; 38: 838
- 17 Dowson GR. M, Haddow MF, Lee J, Wingad RL, Wass DF. Angew. Chem. Int. Ed. 2013; 52: 9005
- 18 Tseng K.-NT, Lin S, Kamp JW, Szymczak NK. Chem. Commun. 2016; 52: 2901
- 19a Fu S, Shao Z, Wang Y, Liu Q. J. Am. Chem. Soc. 2017; 139: 11941
- 19b Kulkarni NV, Brennessel WW, Jones WD. ACS Catal. 2018; 8: 997
- 20a Biswas N, Sharma R, Srimani D. Adv. Synth. Catal. 2020; 362: 2902
- 20b Biswas N, Das K, Sardar B, Srimani D. Dalton Trans. 2019; 48: 6501
- 20c Biswas N, Srimani D. J. Org. Chem. 2021; 86: 9733
- 20d Biswas N, Srimani D. J. Org. Chem. 2021; 86: 10544
- 21 The experimental procedure for catalysts 1–3 were developed in our laboratory, and the compounds were synthesized in accord with the report in ref. 20b.
- 22a Pellow KJ, Wingad RL, Wass DF. Catal. Sci. Technol. 2017; 7: 5128
- 22b Xie Y, Ben-David Y, Shimon LJ. W, Milstein D. J. Am. Chem. Soc. 2016; 138: 9077
- 23a Mujahed S, Valentini F, Cohen S, Vaccaro L, Gelman D. ChemSusChem 2019; 12: 4693
- 23b Tan D.-W, Li H.-X, Zhu D.-L, Li H.-Y, Young DJ, Yao J.-L, Lang J.-P. Org. Lett. 2018; 20: 608
- 23c Huang S, Wu S.-P, Zhou Q, Cui H.-Z, Hong X, Lin Y.-J, Hou X.-F. J. Organomet. Chem. 2018; 868: 14
- 23d Chang W, Gong X, Wang S, Xiao L.-P, Song G. Org. Biomol. Chem. 2017; 15: 3466
- 23e Wang D, Zhao K, Xu C, Miao H, Ding Y. ACS Catal. 2014; 4: 3910
- 23f Bhattacharyya D, Sarmah BK, Nandi S, Srivastava HK, Das A. Org. Lett. 2021; 23: 869
- 24 2-Ethylhexan-1-ol (5a); Typical Procedure An oven-dried 15 mL pressure tube was charged with BuOH (4 mmol), catalyst 1 (0.5 mol%), and NaOH (25 mol%), and the mixture was purged three times with argon. The tube was sealed with a screw cap and the mixture was heated at 135 °C for 36 h. The resulting mixture was passed through a plug of Celite and then all the volatiles were evaporated. The crude mixture was then purified by column chromatography [silica gel (100–200 mesh)] to give a colorless liquid; yield: 195 mg (75%). 1H NMR (600 MHz, CDCl3): δ = 3.54 (d, J = 5.2 Hz, 2 H), 1.44–1.16 (m, 9 H), 0.89 (m, 6 H). 13C NMR (150 MHz, CDCl3): δ = 65.4, 42.1, 30.2, 29.2, 23.4, 23.2, 14.2, 11.2.
- 25 1,3-Diphenylpropan-1-one (8a); Typical Procedure An oven-dried 15 ml pressure tube was charged with PhCH(Me)OH (1 mmol), BzOH (1 mmol) catalyst 1 (0.5 mol%) and NaOH (25 mol% with respect to both alcohols), and the mixture was purged three times with argon. The tube was sealed with a screw cap and heated at 135 °C for 36 h. The resulting mixture was passed through a plug of Celite and then all the volatiles were evaporated. The crude mixture was then purified by column chromatography [silica gel (100–200 mesh)] to give a white solid; yield: 157 mg (75%). 1H NMR (600 MHz, CDCl3): δ = 7.99 (t, J = 6.7 Hz, 2 H), 7.59 (d, J = 6.8 Hz, 1 H), 7.49 (d, J = 7.6 Hz, 2 H), 7.33 (t, J = 6.7 Hz, 2 H), 7.33–7.23 (m, 2 H), 7.26–7.22 (m, 1 H), 3.35 (t, J = 7.5 Hz, 2 H), 3.11 (t, J = 7.5 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 199.4, 141.4, 137.0, 133.2, 128.7, 128.7, 128.6, 128.6, 128.2, 126.3, 40.6, 30.3.