Subscribe to RSS
DOI: 10.1055/a-2002-8680
Total Syntheses of Dysidealactams E and F and Dysidealactone B, Drimane-Type Sesquiterpenes Derived from a Dysidea sp. of Marine Sponge
We thank the National Natural Science Foundation of China (Grant Nos. 22250410258 and 22250410259), the Science and Technology Planning Program of Zhanjiang (Grant. No. 2021A05247) and the Ministry of Science and Technology of the People’s Republic of China for financial support.
Dedicated to Professor Masahiro Murakami (Kyoto University) in recognition of his profound and ingenious contributions to so many aspects of chemical synthesis.
Abstract
Dysidealactams E and F and dysidealactone B are recently reported marine natural products. Their syntheses from β-cyclocitral are detailed here. The preparation of certain derivatives and analogues of these compounds is also described and single-crystal X-ray analyses of two of these, as well as that of (±)-dysidealactam F, are reported.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2002-8680.
- Supporting Information
Publication History
Received: 06 December 2022
Accepted after revision: 21 December 2022
Accepted Manuscript online:
21 December 2022
Article published online:
13 February 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Jansen BJ. M, de Groot A. Nat. Prod. Rep. 1991; 8: 309
- 1b Jansen BJ. M, de Groot A. Nat. Prod. Rep. 2004; 21: 449
- 1c Huang Y, Valiante V. ChemBioChem 2022; 23: e202200173
- 1d Du W, Yang Q, Xu H, Dong L. Chin. J. Nat. Med. 2022; 20: 737
- 2a Beckmann L, Tretbar US, Kitte R, Tretbar M. Molecules 2022; 27: 2501
- 2b Sun L, Wang H, Yan M, Sai C, Zhang Z. Molecules 2022; 27: 7376
- 3a He J.-B, Tao J, Miao X.-S, Bu W, Zhang S, Dong Z.-J, Li Z.-H, Feng T, Liu J.-K. Fitoterapia 2015; 102: 1
- 3b Gou X, Tian D, Wei J, Ma Y, Zhang Y, Chen M, Ding W, Wu B, Tang J. Mar. Drugs 2021; 19: 416
- 3c Zhuravleva OI, Belousova EB, Oleinokova GK, Antonov AS, Khudyakova YV, Rasin AB, Popov RS, Menchinskaya ES, Trinh PT. H, Yurchenko AN, Yurchenko EA. Mar. Drugs 2022; 20: 584
- 3d Pathompong P, Pfütze S, Surup F, Boonpratuang T, Choeyklin R, Matasyoh JC, Decock C, Stadler M, Boonchird C. Molecules 2022; 27: 5968
- 4 Khushi S, Salim AA, Elbanna AH, Nahar L, Bernhardt PV, Capon RJ. J. Nat. Prod. 2020; 83: 1577
- 5 Dysidealactone A (6) and dysidealactone B (7) also appear to have been isolated from the New Caledonian sponge Dysidea fusca; see: Montagnac A, Martin M.-T, Debitus C, Païs M. J. Nat. Prod. 1996; 59: 866
- 6 For an example, see: Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
- 7 For an example, see: Zhao Z, Yue J, Ji X, Nian M, Kang K, Qioa H, Zheng X. Bioorg. Chem. 2021; 108: 104557
- 8 For an example, see: Zard SZ. Tetrahedron 2021; 79: 131852
- 9a Jansen BJ. M, de Groot A. Nat. Prod. Rep. 1991; 8: 319
- 9b de Groot A, Jansen BJ. M, Verstegen-Haaksma AA, Swarts HJ, Orru RV. A, Stork GA, Wijnberg JB. P. A. Pure Appl. Chem. 1994; 66: 2053
- 9c Suzuki Y, Takao K.-I, Tadano K.-I. Stud. Nat. Prod. Chem. 2003; 29: 127
- 9d Vlad PF. Stud. Nat. Prod. Chem. 2006; 33: 393
- 9e Cortés M, Delgado V, Saitz C, Armstrong V. Nat. Prod. Commun. 2011; 6: 477
- 9f Shi H, Fang L, Tan C, Shi L, Zhang W, Li C.-c, Luo T, Yang Z. J. Am. Chem. Soc. 2011; 133: 14944
- 9g Wang X, Zhang S, Cui P, Li S. Org. Lett. 2020; 22: 8702
- 10a Brieger G. Tetrahedron Lett. 1965; 4429
- 10b Pelletier SW, Ohtsuka Y. Tetrahedron 1977; 33: 1021
- 10c Akita H, Oishi T. Chem. Pharm. Bull. 1981; 29: 1580
- 10d Hueso-Rodriguez JA, Rodriguez B. Tetrahedron 1989; 45: 1567
- 10e Bendall JG, Cambie RC, Grimsdale AC, Rutledge PS, Woodgate PD. Aust. J. Chem. 1992; 45: 1063
- 10f Gosh S, Ghatak UR. Tetrahedron 1992; 48: 7289
- 10g Nakano T, Villamizar J, Maillo MA. J. Chem. Res., Synop. 1998; 560
- 11a Kobayashi N, Kuniyoshi H, Ishigami K, Watanabe H. Biosci., Biotechnol., Biochem. 2008; 72: 2708
- 11b Kuzuya K, Mori N, Watanabe H. Org. Lett. 2010; 12: 4709
- 12 For a study of the formation of compound 13 from precursor (±)-12, see: Loperfido JC. J. Org. Chem. 1973; 38: 399
- 13 As a referee has pointed out, the aromatization process leading to byproduct 13 is most likely the result of a radical-chain process whereby an initiating radical abstracts the doubly allylic hydrogen from cycloadduct 12, and the ensuing cyclohexadienyl radical then undergoes aromatization by elimination of a methyl radical. The latter, in turn, abstracts the doubly allylic hydrogen of another molecule of 12, thereby propagating the chain; see: Walton JC, Studer A. Acc. Chem. Res. 2005; 38: 794
- 14 CCDC 2220506, 2220507, and 2220508 contain the supplementary crystallographic data for compounds (±)-5, (±)-8, and (±)-18. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 15 Jang Y, Han S. J. Org. Chem. 2020; 85: 7576
- 16 (±)-[(5aS,9aS)-6,6,9a-Trimethyl-1,3-dioxo-1,3,4,5,5a,6,7,8,9,9a-decahydro-2H-benzo[e]isoindol-2-yl]acetic acid [(±)-4] A Schlenk tube equipped with a magnetic stirrer bar was charged with compound (±)-8 (500 mg, 2.01 mmol), glycine (1.51 g, 20.1 mmol), and 1:1 MeCN–H2O (6.0 mL). The tube was sealed and the contents were heated at 105 °C (oil-bath temperature) for 8 h. The cooled mixture was then diluted with H2O (10 mL) and the separated aqueous phase was extracted with EtOAc (3 × 25 mL). The combined organic phases were dried (Na2SO4), filtered, and concentrated under reduced pressure and the resulting residue was subjected to flash chromatography [silica gel, EtOAc–PE (1:3 + 1% AcOH)] to afford, after concentration of the appropriate fractions, a clear yellow oil; yield: 331 mg (54%); Rf = 0.3 (1:3 EtOAc–PE +1% AcOH). FTIR (ATR): 2930, 1703, 1420, 1391, 1233, 1207, 1117, 937, 735 cm–1. 1H NMR (400 MHz, CD3OD): δ = 4.13 (s, 2 H), 2.50 (d, J = 14.0 Hz, 2 H), 2.25 (m, 1 H), 1.97 (m, 1 H), 1.76 (m, 1 H), 1.63–1.45 (complex m, 3 H), 1.38–1.25 (complex m, 3 H), 1.23 (s, 3 H), 0.96 (s, 3 H), 0.93 (s, 3 H); COOH proton not observed. 13C{1H} NMR (100 MHz, CD3OD): δ = 171.8, 171.5, 170.9, 151.4, 141.5, 53.2, 42.9, 39.2, 37.6, 36.3, 34.4, 33.9, 23.0, 22.0, 21.1, 19.5, 19.0. HRMS (TOF ESI, +): m/z [M + H]+ calcd for C17H24NO4: 306.1705; found: 306.1714.
- 17 For a related example of the use of urea as an ammonia surrogate, see: Naidu PP, Raghunadh A, Rao KR, Mekala R, Babu JM, Rao BR, Siddaiah V, Pal M. Synth. Commun. 2014; 44: 1475
- 18a Escobar C, Wittke O. Acta Crystallogr., Sect. C: Struct. Chem. 1988; 44: 154
- 18b Narbutas PT, Pierens GK, Clegg JK, Garson MJ. Nat. Prod. Commun.
- 19 For example, see: Messchendorp L, van Loon JJ. A, Gols GJ. Z. Entomol. Exp. Appl. 1996; 79: 195
- 20a Ley SV, Mahon M. Tetrahedron Lett. 1981; 22: 4747
- 20b Burton LP. J, White JD. J. Am. Chem. Soc. 1981; 103: 3226
- 20c Nakano T, Aguero ME. J. Chem. Soc., Perkin Trans. 1 1982; 1163
- 20d Jansen BJ. M, Peperzak RM, de Groot A. Recl. Trav. Chim. Pays-Bas 1987; 106: 505 ; and references cited therein
- 20e Sánchez AJ, Konopelski JP. J. Org. Chem. 1994; 59: 5445
- 20f Vlad PF, Gorincioi EC, Coltsa MN, Deleanu C. Russ. Chem. Bull. 2000; 49: 546
- 21 For a conceptually related approach using the naturally derived drimane polygodial, see: Rhak KJ, Bissember AC, Smith JA. Tetrahedron 2018; 74: 1167
- 22 For a chiral-auxiliary-based method leading to the formation of homochiral Diels–Alder adducts of diene 10, see: Hendersen JR, Parvez M, Keay BA. Org. Lett. 2009; 11: 3178
For useful, recent reviews on these sesquiterpenoids, see:
For examples, see:
For examples, see:
Single-crystal X-ray analyses of the naturally occurring enantiomeric form of compound 18 have been reported, see: