Subscribe to RSS
DOI: 10.1055/a-2331-0951
Smart scanning: automatic detection of superficially located lymph nodes using ultrasound – initial results
Smart Scanning: Automatisches Erfassen oberflächlicher Lymphknoten im Ultraschall – erste ErgebnisseAbstract
Purpose
Over the last few years, there has been an increasing focus on integrating artificial intelligence (AI) into existing imaging systems. This also applies to ultrasound. There are already applications for thyroid and breast lesions that enable AI-assisted sonography directly on the device. However, this is not yet the case for lymph nodes.
Materials and Methods
The aim was to test whether already established programs for AI-assisted sonography of breast lesions and thyroid nodules are also suitable for identifying and measuring superficial lymph nodes. For this purpose, the two programs were used as a supplement to routine ultrasound examinations of superficial lymph nodes. The accuracy of detection by AI was then evaluated using a previously defined score. If available, a comparison was made with cross-sectional imaging.
Results
The programs that were used are able to adequately detect lymph nodes in the majority of cases (78.6%). Problems were caused in particular by a high proportion of echo-rich fat, blurred differentiation from the surrounding tissues and the occurrence of lymph node conglomerates. The available cross-sectional images did not contradict the classification of the lesion as a lymph node in any case.
Conclusion
In the majority of cases, the tested programs are already able to detect and measure superficial lymph nodes. Further improvement can be expected through specific training of the software. Further developments and studies are required to assess risk of malignancy.
Key Points
-
The inclusion of AI in imaging is increasingly becoming a scientific focus.
-
The detection of lymph nodes is already possible using device-integrated AI software.
-
Malignancy assessment of the detected lymph nodes is not yet possible.
Citation Format
-
Rink M, Künzel J, Stroszczynski C et al. Smart scanning: automatic detection of superficially located lymph nodes using ultrasound – initial results. Fortschr Röntgenstr 2024; DOI 10.1055/a-2331-0951
Zusammenfassung
Hintergrund
In den letzten Jahren rückt die Integration künstlicher Intelligenz (KI) in bestehende Bildgebungen zunehmend in den Fokus. Dies gilt auch für die Sonografie. Für Läsionen der Schilddrüse sowie der Mamma existieren bereits Anwendungen, die unmittelbar am Gerät eine KI-assistierte Sonografie ermöglichen. Für Lymphknoten ist dies bisher nicht der Fall.
Material und Methoden
Getestet wurde, ob bereits etablierte Programme zur KI-assistierten Sonografie von Läsionen der Brust beziehungsweise Schilddrüsenknoten sich grundsätzlich auch dazu eignen, oberflächliche Lymphknoten zu erkennen und zu vermessen. Hierzu wurden die beiden Programme im Rahmen klinischer Routineuntersuchungen oberflächlicher Lymphknoten ergänzend zum Standard genutzt. Die Genauigkeit der Erfassung durch die KI wurde im Anschluss durch einen vorher definierten Score bewertet. Sofern verfügbar erfolgte ein Vergleich zu einer Schnittbildgebung.
Ergebnisse
Die genutzten Programme sind in der Mehrheit der Fälle (78,6%) in der Lage, Lymphknoten adäquat zu erfassen. Probleme bereiten insbesondere ein hoher Anteil echoreichen Fetts, eine unscharfe Abgrenzbarkeit zur Umgebung sowie das Auftreten von Lymphknoten-Konglomeraten. Die verfügbaren Schnittbildgebungen widersprachen in keinem Fall der Wertung der Läsion als Lymphknoten.
Schlussfolgerungen
Die getesteten Programme sind in der Mehrzahl der Fälle bereits in der Lage, oberflächliche Lymphknoten zu erfassen. Durch ein entsprechendes Training der Software ist eine weitere Verbesserung zu erwarten. Zur Dignitätseinschätzung sind weitere Entwicklungen und Studien notwendig.
Kernaussagen
-
Die Einbeziehung von KI in Bildgebungen steht zunehmend im wissenschaftlichen Fokus.
-
Die Erfassung oberflächlicher Lymphknoten ist durch eine geräteintegrierte KI-Software bereits möglich.
-
Eine Dignitätsabschätzung der erfassten Lymphknoten ist durch diese Programme aktuell nicht möglich.
Keywords
artificial intelligence - ultrasound - multimodal ultrasound - lymphatic - lymph node ultrasound - technical aspectsPublication History
Received: 30 January 2024
Accepted after revision: 14 May 2024
Article published online:
17 June 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Zhao D, He N, Shao YQ. et al. The diagnostic value of contrast-enhanced ultrasound for cervical tuberculous lymphadenitis. Clin Hemorheol Microcirc 2022; 81: 69-79
- 2 Wang T, Xu M, Xu C. et al. Comparison of microvascular flow imaging and contrast-enhanced ultrasound for blood flow analysis of cervical lymph node lesions. Clin Hemorheol Microcirc 2023; 85: 249-259
- 3 Bai X, Wang Y, Song R. et al. Ultrasound and clinicopathological characteristics of breast cancer for predicting axillary lymph node metastasis. Clin Hemorheol Microcirc 2023; 85: 147-162
- 4 Pang W, Wang Y, Zhu Y. et al. Predictive value for axillary lymph node metastases in early breast cancer: Based on contrast-enhanced ultrasound characteristics of the primary lesion and sentinel lymph node. Clin Hemorheol Microcirc 2023;
- 5 Wang T, Guo W, Zhang X. et al. Correlation between conventional ultrasound features combined with contrast-enhanced ultrasound patterns and pathological prognostic factors in malignant non-mass breast lesions. Clin Hemorheol Microcirc 2023; 85: 433-445
- 6 Zhong L, Xie J, Shi L. et al. Nomogram based on preoperative conventional ultrasound and shear wave velocity for predicting central lymph node metastasis in papillary thyroid carcinoma. Clin Hemorheol Microcirc 2023; 83: 129-136
- 7 de Koekkoek-Doll PK, Roberti S, van den Brekel MW. et al. Value of Assessing Peripheral Vascularization with Micro-Flow Imaging, Resistive Index and Absent Hilum Sign as Predictor for Malignancy in Lymph Nodes in Head and Neck Squamous Cell Carcinoma. Cancers 2021; 13: 5071
- 8 Daniaux M, Auer T, De Zordo T. et al. Strain Elastography of Breast and Prostata Cancer: Similarities and Differences. Fortschr Röntgenstr 2015; 188: 253-258
- 9 Kloth C, Kratzer W, Schmidberger J. et al. Ultrasound 2020 – Diagnostics & Therapy: On the Way to Multimodal Ultrasound: Contrast-Enhanced Ultrasound (CEUS), Microvascular Doppler Techniques, Fusion Imaging, Sonoelastography, Interventional Sonography. Fortschr Röntgenstr 2021; 193: 23-32
- 10 Künzel J, Brandenstein M, Zeman F. et al. Multiparametric Ultrasound of Cervical Lymph Node Metastases in Head and Neck Cancer for Planning Non-Surgical Therapy. Diagnostics 2022; 12: 1842
- 11 Gong Z, Xin J, Yin J. et al. Diagnostic Value of Artificial Intelligence-Assistant Diagnostic System Combined With Contrast-Enhanced Ultrasound in Thyroid TI-RADS 4 Nodules. J of Ultrasound Medicine 2023; 42: 1527-1535
- 12 Huang X, Qiu Y, Bao F. et al. Artificial intelligence breast ultrasound and handheld ultrasound in the BI-RADS categorization of breast lesions: A pilot head to head comparison study in screening program. Front Public Health 2023; 10: 1098639
- 13 O’Connell AM, Bartolotta TV, Orlando A. et al. Diagnostic Performance of an Artificial Intelligence System in Breast Ultrasound. J of Ultrasound Medicine 2022; 41: 97-105
- 14 Cao C-L, Li Q-L, Tong J. et al. Artificial intelligence in thyroid ultrasound. Front Oncol 2023; 13: 1060702
- 15 Huang P, Zheng B, Li M. et al. The Diagnostic Value of Artificial Intelligence Ultrasound S-Detect Technology for Thyroid Nodules. Computational Intelligence and Neuroscience 2022; 2022: 1-7
- 16 Jung EM, Stroszczynski C, Jung F. Advanced multimodal imaging of solid thyroid lesions with artificial intelligence-optimized B-mode, elastography, and contrast-enhanced ultrasonography parametric and with perfusion imaging: Initial results. Clin Hemorheol Microcirc 2023; 84: 227-236
- 17 Li Y, Liu Y, Xiao J. et al. Clinical value of artificial intelligence in thyroid ultrasound: a prospective study from the real world. Eur Radiol 2023; 33: 4513-4523
- 18 Zhou J, Du M, Chang S. et al. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound 2021; 19: 29
- 19 Dicle O. Artificial intelligence in diagnostic ultrasonography. Diagnostic and Interventional Radiology 2023;
- 20 Tahmasebi A, Qu E, Sevrukov A. et al. Assessment of Axillary Lymph Nodes for Metastasis on Ultrasound Using Artificial Intelligence. Ultrason Imaging 2021; 43: 329-336
- 21 Zhu Y, Meng Z, Fan X. et al. Deep learning radiomics of dual-modality ultrasound images for hierarchical diagnosis of unexplained cervical lymphadenopathy. BMC Med 2022; 20: 269
- 22 Tiyarattanachai T, Apiparakoon T, Chaichuen O. et al. Artificial intelligence assists operators in real-time detection of focal liver lesions during ultrasound: A randomized controlled study. European Journal of Radiology 2023; 165: 110932
- 23 Guiban O, Rubini A, Vallone G. et al. Can New Ultrasound Imaging Techniques Improve Breast Lesion Characterization? Prospective Comparison between Ultrasound BI-RADS and Semi-Automatic Software “SmartBreast”, Strain Elastography, and Shear Wave Elastography. Applied Sciences 2023; 13: 6764
- 24 Feuerecker B, Heimer MM, Geyer T. et al. Artificial Intelligence in Oncological Hybrid Imaging. Fortschr Röntgenstr 2023; 195: 105-114
- 25 Weigel S, Brehl A-K, Heindel W. et al. Artificial Intelligence for Indication of Invasive Assessment of Calcifications in Mammography Screening. Fortschr Röntgenstr 2023; 195: 38-46