Synlett 2008(17): 2663-2666  
DOI: 10.1055/s-0028-1083514
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Phosphine-Dependent Selective Cross-Dimerization between Terminal Alkylacetylene and Silylacetylene by Iridium(I) Guanidinate Complex-Phosphine System

Kenichi Ogata*a, Oji Okab, Akinori Toyotab, Noriyuki Suzukic, Shin-ichi Fukuzawa*a
a Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
Fax: +81(3)38171916; e-Mail: kogata@chem.chuo-u.ac.jp;
b Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
c RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
Further Information

Publication History

Received 17 July 2008
Publication Date:
01 October 2008 (online)

Abstract

The new iridium(I)-guanidinate complex served as an efficient catalyst for phosphine-dependent selective cross-dimerization between silylacetylene and terminal alkyl- or arylacetylene. Especially, in case of cross-dimerization between silylacetylene and alkylacetylene, E/Z selectivity of resulting enynes could be controlled by changing phosphine.

    References and Notes

  • For recent example of transition-metal-catalyzed homodimerization of alkynes, see:
  • 1a Ohmura T. Yorozuya S. Yamamoto Y. Miyaura N. Organometallics  2000,  19:  365 
  • 1b Yang C. Nolan SP. J. Org. Chem.  2002,  67:  591 
  • 1c Melis K. Vos DD. Jacobs P. Verpoort F. J. Organomet. Chem.  2002,  659:  159 
  • 1d Ogoshi S. Ueta M. Oka M. Kurosawa H. Chem. Commun.  2004,  2732 
  • 1e Chen X. Xue P. Sung HHY. Williams ID. Peruzzini M. Bianchini C. Jia G. Organometallics  2005,  24:  4330 
  • 1f Lee C.-C. Lin Y.-C. Liu Y.-H. Wang Y. Organometallics  2005,  24:  136 
  • 1g Weng W. Guo C. Celenligil-Cetin R. Foxman BM. Ozerov OV. Chem. Commun.  2006,  197 
  • 2a Trost BM. McIntoshi MC. J. Am. Chem. Soc.  1995,  117:  7255 
  • 2b Trost BM. Sorum MT. Chan C. Harms AE. Rhter G. J. Am. Chem. Soc.  1997,  119:  698 
  • 2c Yi CS. Liu N. Organometallics  1998,  17:  3158 
  • 2d Trost BM. Frontier AJ. J. Am. Chem. Soc.  2000,  122:  11727 
  • 2e Chen L. Li C. Tetrahedron Lett.  2004,  45:  2771 
  • 2f Hirabayashi T. Sakaguchi S. Ishii Y. Adv. Synth. Catal.  2005,  347:  872 
  • 2g Nishimura T. Guo X.-X. Ohnishi K. Hayashi T. Adv. Synth. Catal.  2007,  349:  2669 
  • 2h Katagiri T. Tsurugi H. Funayama A. Satoh T. Miura M. Chem. Lett.  2007,  36:  830 
  • 3a Akita M. Yasuda H. Nakamura A. Bull. Chem. Soc. Jpn.  1984,  57:  480 
  • 3b Wang J. Kapon M. Berthet JC. Ephritikhine M. Eisen MS. Inorg. Chim. Acta  2002,  334:  183 
  • 3c Katayama H. Yari H. Tanaka M. Ozawa F. Chem. Commun.  2005,  4336 
  • 3d Katagiri T. Tsurugi H. Satoh T. Miura M. Chem. Commun.  2008,  3405 
  • 3e Tsukada N. Ninomiya S. Aoyama Y. Inoue Y. Org. Lett.  2007,  9:  2919 
  • 4 Ogata K. Toyota A. J. Organomet. Chem.  2007,  692:  4139 
  • 5 Baiely PJ. Pace S. Coord. Chem. Rev.  2001,  214:  91 ; and references therein
  • 7a Jenke T. Stoeckli-Evans H. Bodensieck U. Suess-Fink G. J. Organomet. Chem.  1991,  401:  347 
  • 7b Yip H.-K. Che C.-M. Zhou Z.-Y. Mak TCW. J. Chem. Soc., Chem. Commun.  1992,  1369 
  • 7c Bailey PJ. Mitchell LA. Parson S. J. Chem. Soc., Dalton Trans.  1996,  2839 
  • 7d Dinger MB. Henderson W. Chem. Commun.  1996,  211 
  • 7e Holman KT. Robinson SD. Sahajpal A. Steed JW. J. Chem. Soc., Dalton Trans.  1999,  15 
  • 7f Foley SR. Yap GPA. Richeson DS. Chem. Commun.  2000,  1515 
  • 7g Bailey PJ. Grant KJ. Mitchell LA. Pace S. Parkin A. Parsons S. J. Chem. Soc., Dalton Trans.  2000,  1887 
  • 7h Berry JF. Cotton FA. Huang P. Murillo CA. Wang X. Dalton Trans.  2005,  3713 
  • 8a Robinson SD. Sahajal A. J. Chem. Soc., Dalton Trans.  1997,  3349 
  • 8b Robinson SD. Sahajpal A. Steed J. Inorg. Chim. Acta  2000,  303:  265 
  • 8c Holland AW. Bergman RG. J. Am. Chem. Soc.  2002,  124:  9010 
  • 12a Bianchini C. Peruzzini M. Zanobini F. Frediani P. Albinati A. J. Am. Chem. Soc.  1991,  113:  5453 
  • 12b Wakatsuki Y. Yamazaki H. Kumegawa N. Satoh T. Satoh JY. J. Am. Chem. Soc.  1991,  113:  9604 
  • 12c Bianchini C. Frediani P. Masi D. Peruzzini M. Zanobini F. Organometallics  1994,  13:  4616 
6

Synthesis of {Ir[(N 2 ( i -Pr) 2 CN( i -Pr) 2 ](cod)} (1) A solution of [IrCl(cod)]2 (281 mg, 0.42 mmol) in THF (5 mL) was cooled to -78 ˚C, and then a THF solution of Li[(N2 (i-Pr)2CN(i-Pr)2], which was prepared by the reaction of the DIC (0.13 mL, 0.84 mmol) with LDA solution (1.8 M in heptane-THF-ethylbenzene solution, 0.48 mL, 0.86 mmol) at -78 ˚C, was added. The mixture was allowed to warm to r.t. After 4 h, the volatiles were removed under reduced pressure. The residual solid was extracted with toluene and the filtrate was evaporated off under high vacuum to give orange complex 1 (278 mg, 0.53 mmol, 63%). ¹H NMR (400 MHz, C6D6): δ = 0.96 (d, J = 6.4 Hz,
12 H, i-PrCH3), 1.23 (d, J = 6.9 Hz, 12 H, i-PrCH3), 1.39 (d, J = 7.8 Hz, 4 H, cod), 2.20 (br, 4 H, cod), 3.43 (sept, J = 6.9 Hz, 2 H, i-PrCH), 3.80 (sept, J = 6.4 Hz, 2 H, i-PrCH), 4.09 (br, 4 H, cod). ¹³C{¹H} NMR (100 MHz, CDCl3): δ = 22.8, 25.0, 32.5, 47.1, 48.6, 58.9 (cod, i-Pr), 128.5 (cod), 179.7 (NCN). Anal. Calcd for C21H40IrN3: C, 47.88; H, 7.65; N, 7.98. Found: C, 47.82; H, 7.60; N, 8.00.

9

Crystal Data for 1
C21H40IrN3, MW = 526.79, monoclinic, P21/n, a = 20.5195 (4) Å, b = 15.5067 (4) Å, c = 27.6890 (4) Å, β = 102.4145 (16)˚, V = 8604.4 (3) Å3, Z = 16, D calc = 1.626 g/cm³, µ (Mo Kα) = 62.328 cm, 84841 measured reflections, 24677 independent (R int = 0.063), 13318 observed [I > 2σ(I)]. R1 = 0.0353, wR2 = 0.0903 (all data). Atomic coordinates, thermal parameters, bond distances, and angles have been deposited at the Cambridge Crystallographic Data Center. CCDC number: 668977.

10

General Procedure for Homodimerization of Terminal Alkynes (Table 1 and Scheme 2)
The mixture of 1 (16 mg, 0.03 mmol), toluene (3 mL), phosphine (16 mg, 0.06 mmol), and terminal alkyne (1.0 mmol) was charged in a sealed tube under argon atmosphere. After stirring for 6 h at 80 ˚C, the solvent was removed, and the residue was chromatographed on SiO2, using hexane or Et2O-hexane (1:3) as eluent. The solvent was removed to give dimeric product 3 or 4.

11

Results of dimerization of 1-octyne(2a) catalyzed by 1-trialkylphosphine system; 1-Et3P: yield 60%, E/Z = 42:58; 1-n-Pr3P: yield 79%, E/Z = 40:60

13

General Procedure for Cross-Dimerization of Silylacetylene with Terminal Alkynes (Table 2 and Scheme 3) The mixture of 1 (25 mg, 0.05 mmol), toluene (3 mL), phosphine (26 mg, 0.10 mmol), silylacetylene (1.0 mmol), and terminal alkyne (2.0 mmol) was charged in sealed tube under argon atmosphere. After stirring for 6 h at 80 ˚C, the solvent was removed, and the residue was chromatographed on SiO2, using hexane as eluent. Homo-dimer was eluted first. Then the eluate containing cross-dimer 5 was obtained. The solvent was removed to give cross-dimer 5 as colorless or pale-yellow oil.
Spectral Data for New Compounds
Product (E)-5d: ¹H NMR (400 MHz, CDCl3): δ = 0.18 (s,
9 H, SiMe3), 0.87 (d, J = 7.0 Hz, 6 H, CH3), 1.20-1.30 (m,
2 H, CH2), 1.50-1.60 (m, 1 H, CH), 2.00-2.20 (m, 2 H, CH2), 5.50 (dt, J = 15.8, 1.8 Hz, 1 H, CH=CH), 6.21 (dt, J = 15.8, 7.0 Hz, 1 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CDCl3):
δ = 0.0 (s, SiMe3), 22.4, 27.3, 30.9, 37.6 (s, C6H13), 92.4, 104.2 (s, C=C), 109.4, 146.5 (C=C). HRMS (EI): m/z [M - Me]+ calcd for C11H19Si: 179.1256; found: 179.1259.
Product (Z)-5d: ¹H NMR (400 MHz, CDCl3): δ = 0.19 (s,
9 H, SiMe3), 0.90 (d, J = 6.4 Hz, 6 H, CH3), 1.20-1.30 (m,
2 H, CH2), 1.50-1.60 (m, 1 H, CH), 2.30-2.40 (m, 2 H, CH2), 5.46 (d, J = 10.5 Hz, 1 H, CH=CH), 5.95 (dt, J = 10.5, 7.6 Hz, 1 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CDCl3): δ = 0.0 (s, SiMe3), 22.4, 27.3, 30.9, 37.6 (s, C6H13), 88.7, 92.4 (s, C=C), 109.4, 146.5 (C=C). HRMS (EI): m/z [M - Me]+ calcd for C11H19Si: 179.1256; found: 179.1213.
Product (E)-5e: ¹H NMR (400 MHz, CDCl3): δ = 0.17 (s,
9 H, SiMe3), 3.43 (d, J = 6.9 Hz, 2 H, CH2), 5.53 (dt, J = 15.6, 1.8 Hz, 1 H, CH=CH), 6.35 (dt, J = 15.6, 6.9 Hz,
1 H, CH=CH), 7.10-7.40 (m, 5 H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl3): δ = -0.1 (s, SiMe3), 39.3 (s, CH2Ph), 93.5, 103.7 (s, C=C), 111.0, 126.4, 128.5, 128.7, 138.6, 144.2 (S, C=C, Ph). HRMS (EI): m/z [M]+calcd for C14H18Si: 214.1178; found: 214.1169.
Product (Z)-5e: ¹H NMR (400 MHz, CDCl3): δ = 0.22 (s,
9 H, SiMe3), 3.67 (d, J = 7.3 Hz, 2 H, CH2), 5.60 (d, J = 11.0 Hz, 1 H, CH=CH), 6.10 (dt, J = 10.6, 7.3 Hz, 1 H, CH=CH), 7.10-7.40 (m, 5 H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl3): δ = -0.02 (s, SiMe3), 36.5 (s, CH2Ph), 99.0, 101.8 (s, C=C), 109.9, 126.2, 128.5, 128.5, 139.7, 143.2 (S, C=C, Ph). HRMS (EI): m/z [M]+ calcd for C14H18Si: 214.1178; found: 214.1158.
Product (E)-5g: ¹H NMR (400 MHz, CDCl3): δ = 0.22 (s,
9 H, SiMe3), 2.34 (s, 3 H, CH3), 6.12 (d, J = 16.5 Hz, 1 H, CH=CH), 6.98 (d, J = 16.5 Hz, 1 H, CH=CH), 7.10-7.30 (m, 4 H, Ar). ¹³C{¹H} NMR (100 MHz, CDCl3): δ = 0.0 (s, SiMe3), 21.5 (s, CH3), 96.4, 104.6 (s, C=C), 106.9, 126.2, 129.0, 129.4, 138.9, 142.4 (s, C=C, Ph). HRMS (EI): m/z [M]+ calcd for C14H18Si: 214.1178; found: 214.1171.
Product (E)-5h: ¹H NMR (400 MHz, CDCl3): δ = 0.11 (s,
9 H, SiMe3), 3.81 (s, 3 H, CH3, 6.16 (d, J = 19.2 Hz, 1 H, CH=CH), 6.48 (d, J = 19.2 Hz, 1 H, CH=CH), 6.84 (d, J = 9.2 Hz, 2 H, Ar), 7.37 (d, J = 9.2 Hz, 2 H, Ar). ¹³C{¹H} NMR (100 MHz, CDCl3): δ = -1.6 (s, SiMe3), 55.2 (s, OCH3), 88.4, 89.9 (s, C=C), 113.9, 128.4, 132.1, 133.0, 144.7, 159.6 (s, C=C, Ph). HRMS (EI): m/z [M]+ calcd for C14H18OSi: 230.1127; found: 230.1133.
Product (E)-5i: ¹H NMR (400 MHz, CDCl3): δ = 0.80-2.20 (m, 16 H, C6H13, i-PrCH), 1.07 (br d, 18 H, i-PrCH3), 5.52 (dt, J = 16.0, 1.4 Hz, 1 H, CH=CH), 6.20 (dt, J = 16.0, 6.9 Hz, 1 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CDCl3): δ = 11.3, 14.1, 22.6, 28.6, 28.9, 31.7, 33.1 (s, C6H13, i-PrCH), 18.6 (s, i-PrCH3), 88.5, 106.1 (s, C=C), 109.8, 145.8 (s, CH=CH). HRMS (EI): m/z [M]+ calcd for C19H36Si: 292.2586; found: 292.2583.
Product (Z)-5i: ¹H NMR (400 MHz, CDCl3): δ = 0.80-2.40 (m, 16 H, C6H13, i-PrCH), 1.09 (br d, 18 H, i-PrCH3), 5.50 (d, J = 10.5 Hz, 1 H, CH=CH), 6.0 (m, 1 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CDCl3): δ = 11.3, 14.1, 22.6, 28.8, 29.0, 30.4, 31.7 (s, C6H13, i-PrCH), 18.6 (s, i-PrCH3), 94.6, 103.9 (s, C=C), 109.6, 145.2 (s, CH=CH). HRMS (EI): m/z [M]+ calcd for C19H36Si: 292.2586; found: 292.2587.
Product (E)-5j: ¹H NMR (400 MHz, CDCl3): δ = 0.11 (s,
6 H, SiMe2), 0.80-2.20 (m, 13 H, C6H13), 0.94 (s, 9 H, t-Bu), 5.50 (d, J = 15.8 Hz, 1 H, CH=CH), 6.21 (dt, J = 15.8, 7.0 Hz, 1 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CDCl3): δ =
-4.6 (s, SiMe2), 14.1, 16.6, 22.6, 28.6, 28.8, 31.6, 33.1 [s, C6H13, C(CH3)3], 26.1 [s, C(CH3)3], 90.6, 104.8 (s, C=C), 109.6, 146.2 (s, CH=CH). HRMS (EI): m/z [M]+ calcd for C16H30Si: 250.2117; found: 250.2116.
Product (Z)-5j: ¹H NMR (400 MHz, CDCl3): δ = 0.13 (s,
6 H, SiMe2), 0.80-2.40 (m, 13 H, C6H13), 0.96 (s, 9 H, t-Bu), 5.48 (d, J = 10.8 Hz, 1 H, CH=CH), 5.96 (dt, J = 10.8, 7.4 Hz, 1 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CDCl3): δ =
-4.6 (s, SiMe2), 14.1, 16.6, 22.6, 28.7, 28.9, 30.3, 31.6 [s, C6H13, C(CH3)3], 26.1 [s, C(CH3)3], 96.6, 102.8 (s, C=C), 109.2, 145.6 (s, CH=CH). HRMS (EI): m/z [M]+ calcd for C16H30Si: 250.2117; found: 250.2108.

14

Formation ratio of (E)-5a/(E)-3a = 77:23 (determined by ¹H NMR).

15

Result of cross-dimerization between 2c and 2a catalyzed by 1-Et2PhP system: yield 88%, E/Z = 9:91.