Synlett 2009(1): 71-74  
DOI: 10.1055/s-0028-1087477
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Diastereoselective Synthesis of Functionally Diverse Substituted Pipecolic ­Acids

Stephen Hanessian*, Ludivine Riber, Julien Marin
Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
e-Mail: stephen.hanessian@umontreal.ca;
Further Information

Publication History

Received 23 September 2008
Publication Date:
12 December 2008 (online)

Abstract

The synthesis of cis-4-substituted pipecolic acids, 4,5-disubstituted pipecolic acids, and their 6-oxo analogues starting from enantiopure l-aspartic acid is reported. The synthetic strategy involves as key steps, Suzuki-Miyaura and related Pd-mediated couplings, followed by a catalytic hydrogenation with excellent yields and diastereoselectivities. Enolate alkylations provide 4,5-trans-oriented functionalization.

    References and Notes

  • See, for example:
  • 1a Rapamycin: Vézina C. Kudelski A. Sehgal SN. J. Antibiotics  1975,  28:  721 
  • 1b Swindells DCN. White PS. Findlay JA. Can. J. Chem.  1978,  56:  2491 
  • 1c Findlay JA. Radics L. Can. J. Chem.  1981,  59:  49 
  • 1d McAlpine JB. Swanson SJ. Jackson M. Whittern DN. J. Antibiotics  1991,  44:  C-3 
  • 1e Tetrazomine: Scott JD. Tippie TN. Williams RM. Tetrahedron Lett.  1998,  39:  3659 
  • 1f Homophymine A: Zampella A. Sepe V. Luciano P. Bellotta F. Monti MC. D’Auria MV. Jepsen T. Petek S. Adeline M.-T. Laprévôte O. Aubertin A.-M. Debitus C. Poupat C. Ahond A. J. Org. Chem.  2008,  73:  5319 
  • See, for example:
  • 2a Mersinines A and B: Kam T.-S. Subramaniam G. Lim T.-M. Tetrahedron Lett.  2001,  42:  5977 
  • 2b Sanguinones: Peters S. Spiteller P. J. Nat. Prod.  2007,  70:  1274 
  • 2c

    Bipleiophylline: Kam T.-S., Tan S.-J., Ng S.-W., Komiyama K.; Org. Lett.; 2008, in press

  • 3a For argatroban, see: Okamoto S. Hijikata A. Kikumoto R. Tonomura S. Hara H. Ninomiya K. Maruyama A. Sugano M. Tamao Y. Biochem. Biophys. Res. Commun.  1981,  101:  440 
  • 3b For other examples of inhibitors see: For palinavir, see for example: Beaulieu PL. Lavallée P. Abraham A. Anderson PC. Boucher C. Bousquet Y. Duceppe JS. Gillard J. Gorys V. Grand-Maitre C. Grenier L. Guindon Y. Guse I. Plamondon L. Soucy F. Valois S. Wernic D. Yoakim C. J. Org. Chem.  1997,  62:  3440 
  • 3c Trujillo JI. Meyers MJ. Anderson DR. Hegde S. Mahoney MW. Vernier WF. Buchler IP. Wu KK. Yang S. Hartmann SJ. Reitz DB. Bioorg. Med. Chem. Lett.  2007,  17:  4657 
  • 3d Yao W. Zhuo J. Burns DM. Xu M. Zhang C. Li YL. Qian DQ. He C. Weng L. Shi E. Lin Q. Agrios C. Burn TC. Caulder E. Covington MB. Fridman JS. Friedman S. Katiyar K. Hollis G. Li Y. Liu C. Liu X. Marando CA. Newton R. Pan M. Scherle P. Taylor N. Vaddi K. Wasserman ZR. Wynn R. Yeleswaram S. Jalluri R. Bower M. Zhou BB. Metcalf B. J. Med. Chem.  2007,  50:  603 
  • For selected references, see:
  • 4a Barnes RD, Wood-Kaczmar MW, Curzons AD, Lynch IR, Richardson JE, and Buxton PC. inventors; US  24721723. 
  • 4b Murthy KSK. Rey AW. Tjepkema M. Tetrahedron Lett.  2003,  44:  5355 
  • 4c Czibula L. Nemes A. Sebök F. Szántay C. Mák M. Eur. J. Org. Chem.  2004,  3336 
  • 4d Brandau S. Landa A. Franzén J. Marigo M. Jørgensen KA. Angew. Chem. Int. Ed.  2006,  45:  4305 
  • 4e Bower JF. Riis-Johannessen T. Szeto P. Whitehead AJ. Gallagher T. Chem. Commun.  2007,  728 
  • 5 Feng X. Fandrick K. Johnson R. Janowsky A. Cashman JR. Bioorg. Med. Chem.  2003,  11:  775 
  • 6 Pei Z. Li X. vonGeldern TW. Longenecker K. Pireh D. Stewart KD. Backes BJ. Lai C. Lubben TH. Ballaron SJ. Beno DWA. Kempf-Grote AJ. Sham HL. Trevillyan JM. J. Med. Chem.  2007,  50:  1983 
  • 7 Xia M. Hou C. Pollack S. Brackley J. DeMong D. Pan M. Singer M. Matheis M. Olini G. Cavender D. Wachter M. Bioorg. Med. Chem. Lett.  2007,  17:  5964 ; and references cited therein
  • See, for example:
  • 8a Bailey PD. Millwood PA. Smith PD. Chem. Commun.  1998,  633 
  • 8b Kumareswaran R. Balasubramanian T. Hassner A. Tetrahedron Lett.  2000,  41:  8157 
  • 8c Ma D. Sun H. J. Org. Chem.  2000,  65:  6009 
  • 8d Amat M. Perez M. Llor N. Bosch J. Lago E. Molins E. Org. Lett.  2001,  3:  611 
  • 8e Touré BB. Hall DG. Angew. Chem. Int. Ed.  2004,  43:  2001 
  • 8f Escolano C. Amat M. Bosch J. Chem. Eur. J.  2006,  12:  8198 
  • 8g Larivee A. Charette AB. Org. Lett.  2006,  8:  3955 
  • For recent reviews, see:
  • 9a Couty F. Amino Acids  1999,  16:  297 
  • 9b Kadouri-Puchot C. Comesse S. Amino Acids  2005,  29:  101 
  • 9c See also: Agami C. Comesse S. Kadouri-Puchot C. J. Org. Chem.  2000,  65:  4435 
  • 10a Muller M. Schoenfelder A. Didier B. Mann A. Wermuth C.-G. Chem. Commun.  1999,  683 
  • 10b Acherki H. Alvarez-Ibarra C. de Dios A. Gutierrez M. Quiroga ML. Tetrahedron: Asymmetry  2001,  12:  3173 
  • 10c Hanessian S. Seid M. Nilsson I. Tetrahedron Lett.  2002,  43:  1991 
  • 10d Hanessian S. van Otterlo WAL. Nilsson I. Bauer U. Tetrahedron Lett.  2002,  43:  1995 
  • 10e Marin J., Didierjean C., Aubry A., Casimir J. R., Briand J. P., Guichard G.; J. Org. Chem.; 2004, 69: 130
  • 10f Acherki H. Alvarez-Ibarra C. Luján JFC. Quiroga-Feijóo ML. Tetrahedron: Asymmetry  2005,  16:  4034 
  • 11 Murray PJ. Starkey ID. Tetrahedron Lett.  1996,  37:  1875 
  • For recent reviews, see:
  • 12a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 12b Chemler SR. Trauner D. Danishefsky SJ. Angew. Chem. Int. Ed.  2001,  40:  4544 
  • 12c Kotha S. Lahiri K. Kashinath D. Tetrahedron  2002,  58:  9633 
  • 15a Knor S. Laufer B. Kessler H. J. Org. Chem.  2006,  71:  5625 
  • 15b Torrado M. Masaguer CF. Raviña E. Tetrahedron Lett.  2007,  48:  323 
  • 16 Mu Y. Gibbs RA. Tetrahedron Lett.  1995,  36:  5669 
  • 17 Molander GA. Yun C.-S. Tetrahedron  2002,  58:  1465 
  • 18 Molander GA. Ito T. Org. Lett.  2001,  3:  393 
  • 19 Yin J. Buchwald SL. Org. Lett.  2000,  2:  1101 
  • 20 Wallace DJ. Klauber DJ. Chen CY. Volante RP. Org. Lett.  2003,  5:  4749 
  • 23a Hanessian S. Ma J. Tetrahedron Lett.  2001,  42:  8785 
  • 23b Hanessian S. Papeo G. Angiolini M. Fettis K. Beretta M. Munro A. J. Org. Chem.  2003,  68:  7204 
  • 23c Hanessian S. Tremblay M. Marzi M. Del Valle JR. J. Org. Chem.  2005,  70:  5070 
13

General Procedure for Suzuki-Miyaura Coupling Under argon, to a solution of 2 (1 equiv) in THF (0.04 M) were added the boronic acid (1.5 equiv), (Ph3P)PdCl2 (0.05 equiv) and a 2 M Na2CO3 solution (1.5 mL for 0.11 mmol of 2). The mixture was stirred at 40 ˚C overnight. The reaction generally turned black at completion. H2O was added, and the aqueous layer was extracted three times with Et2O. The combined organic layers were washed with brine and dried over Na2SO4. After filtration, the solvent was evaporated under reduced pressure. The resulting residue was purified by flash chromatography (generally hexane-EtOAc, 8:2).

14

Data for Selected Compound: (2 S ,4 S )-Di- tert -butyl 6-Oxo-4-phenylpiperidine-1,2-dicarboxylate (4a) From 3a (119 mg, 0.32 mmol) was obtained 4a as a white solid (120 mg, 100%); [α]D -28.6 (c 1.04, CHCl3); mp 142.5-147.5 ˚C. IR (KBr): 2982, 2934, 1731, 1703, 1605, 1495, 1473, 1459, 1392, 1365, 1283, 1270, 1237, 1153, 1135, 1099, 1042, 1029, 1015 cm. ¹H NMR (400 MHz, CDCl3): δ = 7.37 (t, 2 H, J = 7.2 Hz), 7.29 (t, 1 H, J = 7.4 Hz), 7.21 (d, 2 H, J = 7.2 Hz), 4.60 (dd, 1 H, J = 10.0, 6.6 Hz), 3.17-3.08 (m, 1 H), 2.85-2.79 (m, 1 H), 2.64 (dd, 1 H, J = 16.8, 13.0 Hz), 2.59-2.52 (m, 1 H), 2.03-1.94 (m, 1 H), 1.56 (s, 9 H), 1.48 (s, 9 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 170.2, 169.6, 152.1, 141.7, 128.6, 126.9, 126.1, 83.4, 81.9, 58.7, 41.5, 36.7, 33.4, 27.5 ppm. HRMS: m/z calcd for C21H29NO5: 398.20457; found: 398.19487 [M + Na]+.

21

Data for Selected Compound: (2 S ,4 S ,5 R )-Di- tert -butyl 5-Allyl-6-oxo-4-phenylpiperidine-1,2-dicarboxylate (5) From 4a (1.06 g, 2.82 mmol) was obtained 5 as a white solid (904 mg, 77%); [α]D -133.1 (c 1.41, CHCl3); mp 115-117 ˚C. IR (KBr): 2980, 1728, 1707, 1457, 1366, 1283, 1248, 1225, 1145, 1028 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.36-7.28 (m, 2 H), 7.28-7.20 (m, 1 H), 7.18-7.08 (m, 2 H), 5.70 (dddd, 1 H, J = 17.0, 10.1, 8.6, 5.7 Hz), 4.97 (d, 1 H, J = 10.1 Hz), 4.85 (d, 1 H, J = 17.1 Hz), 4.47 (dd, 1 H, J = 10.3, 6.2 Hz), 2.92 (dt, 1 H, J = 11.8, 11.8, 3.9 Hz), 2.73 (td, 1 H, J = 11.9, 4.5, 4.5 Hz), 2.66-2.51 (m, 1 H), 2.38 (ddd, 1 H, J = 13.7, 6.1, 4.0 Hz), 2.06-1.93 (m, 2 H), 1.51 (s, 9 H), 1.42 (s, 9 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 171.8, 170.1, 152.3, 141.3, 134.0, 128.4, 126.9, 126.7, 117.4, 83.0, 81.6, 58.4, 49.0, 40.5, 33.5, 32.3, 27.4, 27.4 ppm. HRMS: m/z calcd for C24H33NO5: 438.23587; found: 438.22464 [M + Na]+.

22

Data for Selected Compound: (2 S ,4 R )-Di- tert -butyl 4-Phenylpiperidine-1,2-dicarboxylate (8) From 4a (30 mg, 0.08 mmol) was obtained 8 as a colorless gum (25 mg, 93%); [α]D -15.6 (c 0.95, CHCl3). IR (NaCl): 2976, 1738, 1699, 1602, 1478, 1454, 1393, 1366, 1249, 1150, 1028 cm. ¹H NMR (400 MHz, CDCl3): δ (rotamers) = 7.35-7.31 (m, 2 H), 7.26-7.21 (m, 3 H), 4.25-4.21 (m, 1 H), 3.75-3.56 (m, 2 H), 2.88-2.80 (m, 1 H), 2.28-2.22 (m, 1 H), 2.14-2.02 (m, 2 H), 1.87-1.78 (m, 1 H), 1.49 (s, 9 H), 1.42 (s, 9 H). ¹³C (100 MHz, CDCl3): δ = 171.3, 155.4, 144.6, 128.2, 126.6, 126.0, 80.6, 79.7, 56.1, 37.1, 32.4, 29.8, 28.0, 27.6 ppm. HRMS: m/z calcd for C21H31NO4: 361.22531; found: 362.23232 [M + H]+.