Subscribe to RSS
DOI: 10.1055/s-0028-1088125
Novel Synthesis of Chiral Unactivated 2-Aryl-1-benzylaziridines
Publication History
Publication Date:
08 April 2009 (online)
Abstract
Chiral (R S ,R)- and (R S ,S)-N-(tert-butylsulfinyl)-2-aryl-aziridines were transformed into (R)- and (S)-2-aryl-1-benzylaziridines via a short three-step procedure. Deprotection and ring opening of (R S ,R)- and (R S ,S)-N-sulfinyl-2-arylaziridines (95-99% de) in acid medium afforded 2-aryl-2-chloroethylamine hydrochlorides in high yield (83-90%). These intermediates were converted into the corresponding chiral N-(benzylidene)-β-aryl-β-chloro-amines in good yield (78-85%). Subsequent reduction of the synthesized aldimines afforded chiral 2-aryl-1-benzylaziridines in good to excellent yield (74-94%) and enantiomeric excess (83-99% ee). The enantiomeric purity of the chiral aldimines and aziridines was established by NMR spectroscopy using Pirkle alcohol as the chiral solvating agent.
Key words
chiral aziridines - asymmetric synthesis - ring opening - ring closure - haloimines
- 2
Aziridines
and Epoxides in Organic Synthesis
Yudin AK. Wiley-VCH; Weinheim: 2006. - For selected examples with N-nucleophiles, see:
-
3a
Karikomi M.De Kimpe N. Tetrahedron Lett. 2000, 41: 10295 -
3b
D’hooghe M.Van Speybroeck V.Van Nieuwenhove A.Waroquier M.De Kimpe N. J. Org. Chem. 2007, 72: 4733 - 4 For a recent example of enzymatic
resolution of unactivated aziridines and their study in nucleophilic
ring opening reactions, see:
Moran-Ramallal R.Liz R.Gotor V. Org. Lett. 2007, 9: 521 -
5a
Gabriel S. Ber. Dtsch. Chem. Ges. 1888, 21: 1049 -
5b
Wenker H. J. Am. Chem. Soc. 1935, 57: 2328 -
5c
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599 - 6
Sinou D.Emziane M. Tetrahedron Lett. 1986, 27: 4423 -
7a
Sweeney JB.Cantrill AA.Drew MGB.McLaren AB.Thobhani S. Tetrahedron 2006, 62: 3694 -
7b
Sweeney JB.Cantrill AA.McLaren AB.Thobhani S. Tetrahedron 2006, 62: 3681 -
7c
Kim DY.Suh KH.Choi JS.Mang JY.Chang SK. Synth. Commun. 2000, 30: 87 -
7d
Cantrill AA.Hall LD.Jarvis AN.Osborn HMI.Raphy J.Sweeney JB. Chem. Commun. 1996, 2631 -
8a
Atkinson RS.Coogan MP.Lochrie IST. Chem. Commun. 1996, 789 -
8b
Roth P.Somfai P.Andersson PG. Chem. Commun. 2002, 1752 -
8c
Sjöholm-Timén Å.Somfai P. J. Org. Chem. 2003, 68: 9958 -
8d
Risberg E.Andreas FB.Somfai P. Chem. Commun. 2004, 2088 -
8e
Risberg E.Fischer A.Somfai P. Tetrahedron 2005, 61: 8443 -
9a
Watson IDG.Yu L.Yudin AK. Acc. Chem. Res. 2006, 39: 194 -
9b
Ma L.Jiao P.Zhang Q.Xu J. Tetrahedron: Asymmetry 2005, 16: 3718 -
9c
Atkinson RS.Tughan G. J. Chem. Soc., Chem. Commun. 1987, 456 -
10a
Bilke JL.Dzuganova M.Fröhlich R.Würthwein E.-U. Org. Lett. 2005, 7: 3267 -
10b
Bouyacoub A.Volatron F. Eur. J. Org. Chem. 2002, 4143 -
10c
Hudlicky T.Rinner U.Gonzalez D.Akgun H.Schilling S.Siengalewicz P.Martinot TA.Pettit GR. J. Org. Chem. 2002, 67: 8726 -
10d
Ibuka T. Chem. Soc. Rev. 1998, 27: 145 -
11a
Denolf B.Leemans E.De Kimpe N. J. Org. Chem. 2007, 72: 3211 -
11b
Denolf B.Leemans E.De Kimpe N. J. Org. Chem. 2008, 73: 5662 -
11c
Denolf B.Mangelinckx S.Törnroos KW.De Kimpe N. Org. Lett. 2006, 8: 3129 -
11d
Denolf B.Mangelinckx S.Törnroos KW.De Kimpe N. Org. Lett. 2007, 9: 187 -
11e
Malkov AV.Stončius S.Kočovský P. Angew. Chem. Int. Ed. 2007, 46: 3722 -
11f
Hodgson DM.Kloesges J.Evans B. Org. Lett. 2008, 10: 2781 -
11g
Chen Q.Li J.Yuan C. Synthesis 2008, 2986 - 12
Li A.-H.Dai L.-X.Aggarwal VK. Chem. Rev. 1997, 97: 2341 -
13a
McCoull W.Davis FA. Synthesis 2000, 1347 -
13b
Hu XE. Tetrahedron 2004, 60: 2701 -
14a
Cossy J.Bellosta V. FR 2821354, 2002, Chem. Abstr. 2003, 138: 169957 -
14b
Allan RD.Tran HW. Aust. J. Chem. 1990, 43: 1123 -
14c
Ghorai MK.Das K.Shukla D. J. Org. Chem. 2007, 72: 5859 -
14d
Ghorai MK.Ghosh K. Tetrahedron Lett. 2007, 48: 3191 -
14e
Ghorai MK.Das K.Kumar A.Ghosh K. Tetrahedron Lett. 2005, 46: 4103 - For some reviews on the importance of phenylethylamines, see:
-
15a
Smith TA. Phytochemistry 1977, 16: 9 -
15b
Juaristi E.Léon-Romo JL.Reyes A.Escalante J. Tetrahedron: Asymmetry 1999, 10: 2441 -
15c
Juaristi E.Escalante J.León-Romo JL.Reyes A. Tetrahedron: Asymmetry 1998, 9: 715 -
15d
Bentley KW. Nat. Prod. Rep. 2006, 23: 444 - 19
Pirkle WH.Sikkenga DL.Pavlin MS. J. Org. Chem. 1977, 42: 384 - 20
Ema T.Tamida D.Sahai T. J. Am. Chem. Soc. 2007, 129: 10591 -
22a
Galindo A.Orea LF.Gnecco D.Enriquez RG.Toscano RA.Reynolds WF. Tetrahedron: Asymmetry 1997, 8: 2877 -
22b
Van NT.De Kimpe N. Tetrahedron 2000, 56: 7299 - 24
Tsuchiya Y.Kumamoto T.Ishikawa T. J. Org. Chem. 2004, 69: 8504 -
25a
Kawamoto AM.Wills M. Tetrahedron: Asymmetry 2000, 11: 3257 -
25b
Kawamoto AM.Wills M. J. Chem. Soc., Perkin Trans. 1 2001, 1916
References and Notes
Postdoctoral Fellow of the Research Foundation-Flanders (FWO).
16
(
R
S
,
R
)-
N
-(
tert
-Butylsulfinyl)-2-(4-methylphenyl)-aziridine
(2d)
Prepared according to a previously
described method, see ref. 11a. ¹H NMR (300
MHz, CDCl3): δ = 1.29
(s, 9 H), 1.99 (d, J = 3.9
Hz, 1 H), 2.34 (s, 3 H), 2.97 (d, J = 7.2
Hz, 1 H), 3.09 (dd, J = 7.2,
3.9 Hz, 1 H), 7.13-7.20 (m, 4 H). ¹³C
NMR (75 MHz, CDCl3): δ = 21.2,
22.8, 28.6, 34.7, 57.4, 126.3, 129.2, 134.6, 137.5. IR (ATR): νmax = 1063,
1362, 1457, 1681, 2960, 3346 cm-¹.
MS (ES, pos. mode): m/z (%) = 238(100) [M + H+]. [α]D -238.5
(c 1.15, CH2Cl2);
mp 106.0-107.0 ˚C. Anal. Calcd for C13H19NOS:
C, 65.78; H, 8.07; N, 5.90; S, 13.51. Found: C, 65.44; H, 8.35;
N, 6.11; S, 13.28.
(
S
)-2-Chloro-2-(4-methylphenyl)ethylamine Hydrochloride (3d)
Prepared according to a previously
described method, see ref. 11a,b. ¹H NMR (300
MHz, D2O): δ = 2.31
(s, 3 H), 3.19 (dd, J = 12.7,
4.4 Hz, 1 H), 3.26 (dd, J = 12.7,
8.7 Hz, 1 H), 4.93 (dd, J = 8.7,
4.4 Hz, 1 H), 7.26-7.32 (m, 4 H). ¹³C
NMR (75 MHz, D2O): δ = 20.8,
45.8, 70.0, 126.6, 130.1, 137.1, 139.6. IR (ATR): νmax = 1146,
1510, 1603, 2361, 2958 cm-¹. MS (ES,
pos. mode): m/z (%) = 152/154(100),
170/172(20) [M + H+]. [α]D +52.6
(c 1.01, MeOH); mp 173.6-174.6 ˚C. Anal.
Calcd for C9H13NCl2: C, 52.45;
H, 6.36; N, 6.80. Found: C, 52.52; H, 6.42; N, 6.57.
Preparation of
(
S
)-
N
-Benzylidene-[2-chloro-2-(4-methylphenyl)ethyl]amine (4d)
Triethylamine (0.09 g, 0.93
mmol) was added to a solution of (S)-2-chloro-2-(4-methylphenyl)ethylamine
hydro-chloride (3d, 0.15 g, 0.88 mmol),
MgSO4 (0.15 g, 1.27 mmol), and benzaldehyde (0.09 g,
0.88 mmol) in CH2Cl2 (15 mL). The reaction
was stirred for 7 h at 0 ˚C. The suspension was
subsequently filtered, and the solvent was evaporated. Diethyl ether
(15 mL) was added and the obtained mixture was again filtered and
evaporated, yielding 4d which was purified
by recrystallization from Et2O (0.18 g); yield 83%. ¹H
NMR (300 MHz, CDCl3): δ = 2.35
(s, 3 H), 4.02 (ddd, J = 12.5,
8.5, 1.1 Hz, 1 H), 4.21 (ddd, J = 12.5,
5.0, 1.7 Hz, 1 H), 5.24 (dd, J = 8.5,
5.0 Hz, 1 H), 7.16-7.45 and 7.72-7.76 (m, 9 H),
8.28 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 21.2,
62.7, 69.0, 127.2, 128.3, 128.6, 129.3, 131.0, 135.8, 137.0, 138.3,
163.7. IR (ATR): νmax = 1449,
1514, 1645, 2361, 2916 cm-¹. MS (ES,
pos. mode): m/z (%):
258/260(100) [M + H+]. [α]D +55.8
(c 0.70, CH2Cl2);
mp 79.4-80.4 ˚C. Anal. Calcd for C16H16NCl:
C, 74.55; H, 6.26; N, 5.43. Found: C, 74.89; H, 6.37; N, 5.20.
Ghorai and co-workers have concluded, based on experimental results, that the Lewis acid mediated nucleophilic ring opening of activated 2-phenylaziridines occurs via an SN2 pathway, see ref. 14c-e.
23
Preparation of
(
R
)-1-Benzyl-2-(4-methylphenyl)-aziridine (8d)
To a stirred solution of
aldimine 4d (0.12 g, 0.47 mmol) in MeOH
(15 mL) was added NaBH4 (0.02 g, 0.47 mmol), and the
reaction mixture was brought to reflux for 3 h. Afterwards, a sat.
soln of NaHCO3 (10 mL) was added, and the organic solvent
was evaporated. The resulting mixture was extracted with CH2Cl2 (3 × 15
mL), and the combined organic layers were dried (MgSO4)
and filtered to afford
1-benzyl-2-(4-methylphenyl)aziridine
(8d, 0.09 g) in pure form after removal
of the solvent in vacuo; yield 92%. ¹H NMR
(300 MHz, CDCl3): δ = 1.82
(d, J = 6.6
Hz, 1 H), 1.97 (d, J = 3.3
Hz, 1 H), 2.32 (s, 3 H), 2.47 (dd, J = 6.6,
3.3 Hz, 1 H), 3.58 (d, J = 13.8
Hz, 1 H), 3.70 (d, J = 13.8
Hz, 1 H), 7.08-7.38 (m, 9 H). ¹³C
NMR (75 MHz, CDCl3): δ = 21.1, 37.8,
41.4, 64.8, 126.1, 126.9, 127.8, 128.3, 129.0, 136.5, 137.1, 139.2.
IR (ATR): νmax = 1026,
1452, 1517, 2826, 3028 cm-¹. MS (ES,
pos. mode): m/z (%) = 224(100) [M + H+]. [α]D -55.8
(c 1.01, CH2Cl2).
Anal. Calcd for C16H17N: C, 86.05; H, 7.67;
N, 6.27. Found: C, 86.21; H, 7.83; N, 5.96.