Subscribe to RSS
DOI: 10.1055/s-0028-1088126
Intramolecular Anodic Olefin Coupling Reactions: Using Radical Cation Intermediates to Trigger New Umpolung Reactions
Publication History
Publication Date:
08 April 2009 (online)
Abstract
Anodic electrochemistry is a powerful tool for generating radical cation intermediates and initiating new cyclization reactions. Like most electrochemical reactions, the transformations involve umpolungs. In this review, recent studies examining the intramolecular coupling of radical cations derived from enol ethers, vinyl sulfides, and ketene acetals with carbon, oxygen, and nitrogen trapping groups are discussed to highlight their synthetic potential.
1 Introduction and Background
2 Arteannuins: A Backdrop for Discovery
3 A Detour: Ketene Acetals as Anodic Olefin Coupling Partners
4 Continuing the Detour: Ineleganolide and a Revised Working Model
5 Extending the Model: Nitrogen Trapping Groups
6 Back to Arteannuins: Completing the Ring Skeleton
7 Lactone Targets and a Couple of Final Points
8 Conclusions
Key words
electron transfer - radical cation intermediates - umpolung - cyclizations
- 1 For an extensive summary, see:
Organic Electrochemistry: Fourth Edition,
Revised and Expanded
Lund H.Hammerich O. Marcel Dekker; New York: 2001. - For recent reviews on the use of electrochemistry in synthesis, see:
-
2a
Sperry JB.Wright DL. Chem. Soc. Rev. 2006, 35: 605 -
2b
Yoshida J.Kataoka K.Horcajada R.Nagaki A. Chem. Rev. 2008, 108: 2265 - 3 For an alternative non-oxidative
approach to alkene radical cations, see:
Crich D.Brebion F.Suk DH. Top. Curr. Chem. 2006, 263: 1 -
4a
Moeller KD. Tetrahedron 2000, 56: 9527 -
4b
Moeller KD. Top. Curr. Chem. 1997, 185: 49 - 5
Frey DA.Reddy SHK.Wu N.Moeller KD. J. Org. Chem. 1999, 64: 2805e - 6
Hudson CM.Moeller KD. J. Am. Chem. Soc. 1994, 116: 3347 - For discussions on the double layer, see:
-
7a
Yoshida K. In Electrooxidation in Organic Chemistry: The Role of Cation Radicals as Synthetic Intermediates John Wiley and Sons; New York: 1984. p.13 -
7b
Fry AJ. In Synthetic Organic Chemistry 2nd ed.: John Wiley and Sons; New York: 1989. p.37 -
8a
Liu B.Duan S.Sutterer AC.Moeller KD. J. Am. Chem. Soc. 2002, 124: 10101 -
8b
Duan S.Moeller KD. J. Am. Chem. Soc. 2002, 124: 9368 -
8c
Duan S.Moeller KD. Org. Lett. 2001, 3: 2685 -
8d
Sutterer A.Moeller KD. J. Am. Chem. Soc. 2000, 122: 5636 -
9a
Mihelcic J.Moeller KD. J. Am. Chem. Soc. 2003, 125: 36 -
9b
Mihelcic J.Moeller KD. J. Am. Chem. Soc. 2004, 126: 9106 - 10
Wright DL.Whitehead CR.Sessions EH.Ghiviriga I.Frey DA. Org. Lett. 1999, 1: 1535 -
11a
Hughes CC.Miller AK.Trauner D. Org. Lett. 2005, 7: 3425 -
11b
Miller AK.Hughes CC.Kennedy-Smith JJ.Gradl SN.Trauner D. J. Am. Chem. Soc. 2006, 128: 17057 - For references specifically dealing with oxidative enol ether-furan coupling reactions, see:
-
12a
Moeller KD.New DG. Tetrahedron Lett. 1994, 35: 2857 -
12b
Moeller KD.Tesfai Z. Denki Kagaku (J. Electrochem. Soc. Jpn.) 1994, 62: 1115 -
12c
New DG.Tesfai Z.Moeller KD.
J. Org. Chem. 1996, 61: 1578 -
12d
Whitehead CR.Sessions EH.Ghiviriga I.Wright DL. Org. Lett. 2002, 4: 3763 -
12e
Sperry JB.Whitehead CR.Ghiviriga I.Walczak RM.Wright DL. J. Org. Chem. 2004, 69: 3726 -
12f
Sperry JB.Constanzo JR.Jasinski J.Butcher RJ.Wright DL. Tetrahedron Lett. 2005, 46: 2789 -
12g
Sperry JB.Wright DL. Tetrahedron 2006, 62: 6551 - 13
Sperry JB.Wright DL. J. Am. Chem. Soc. 2005, 127: 8034 - 14
Sperry JB.Ghiviriga I.Wright DL. Chem. Commun. 2006, 194 - For initial characterization studies, see:
-
15a
Sy L.-K.Brown GD.Haynes R. Tetrahedron 1998, 54: 4345 - For more recent structural and synthetic studies, see:
-
15b
Sy L.-K.Cheung K.-K.Zhu N.-Y.Brown GD. Tetrahedron 2001, 57: 8481 -
15c
Sy L.-K.Zhu N.-Y.Brown GD. Tetrahedron 2001, 57: 8495 - For previous synthetic approaches to arteanniuns and related molecules, see:
-
16a
Bariault L.Deon DH. Org. Lett. 2001, 3: 1925 -
16b
Sy L.-K.Ngo K.-S.Brown GD. Tetrahedron 1999, 55: 15127 -
16c
Nowak DM.Lansbury PT. Tetrahedron 1998, 54: 319 -
16d
Schwaebe M.Little RD. J. Org. Chem. 1996, 61: 3240 -
16e
Jefford CW.Velarde J.Bernardinelli G. Tetrahedron Lett. 1989, 30: 4485 -
16f
Zhou WS.Zhang L.Fan ZC.Xu XX. Tetrahedron 1986, 42: 4437 -
16g
Lansbury PT.Mojica CA. Tetrahedron Lett. 1986, 27: 3967 -
16h
Xu X.Zhu J.Huang D.Xhou W. Tetrahedron 1986, 42: 819 - 17
Horner J.Taxil E.Newcomb M. J. Am. Chem. Soc. 2002, 124: 5402 - 18
Wu H.Moeller KD. Org. Lett. 2007, 9: 4599 -
19a
Sun Y.Liu B.Kao J.d’Avignon DA.Moeller KD. Org. Lett. 2001, 3: 1729 -
19b
Sun Y.Moeller KD. Tetrahedron Lett. 2002, 43: 7159 -
19c
Reddy SHK.Chiba K.Sun Y.Moeller KD. Tetrahedron 2001, 57: 5183 -
20a
Hudson CM.Marzabadi MR.Moeller KD.New DG. J. Am. Chem. Soc. 1991, 113: 7372 -
20b
Tinao-Wooldridge LV.Moeller KD.Hudson CM. J. Org. Chem. 1994, 59: 2381 - 21
Ager DJ.Prakash I.Schaad DR. Aldrichimica Acta 1997, 30: 3 -
22a
Huang Y.Moeller KD. Org. Lett. 2004, 6: 4199 -
22b
Huang Y.Moeller KD. Tetrahedron 2006, 62: 6536 -
24a
In this case, the potential was measured for a ketene acetal derived from undecanoic acid. For the oxidation potential of an enol ether, see:
-
24b
Moeller KD.Tinao LV. J. Am. Chem. Soc. 1992, 114: 1033 - 26
Duh C.-Y.Wang S.-K.Chia M.-C.Chiang MY. Tetrahedron Lett. 1999, 40: 6033 - 27
Tang F.Moeller KD. J. Am. Chem. Soc. 2007, 129: 12414 - 28
Moeller KD.Wang PW.Tarazi S.Marzabadi MR.Wong PL. J. Org. Chem. 1991, 56: 1058 -
29a
Xu H.-C.Brandt JD.Moeller KD. Tetrahedron Lett. 2008, 49: 3868 -
29b
Brandt JD.Moeller KD. Heterocycles 2006, 67: 621 -
29c
Brandt JD.Moeller KD. Org. Lett. 2005, 7: 3553 - 30
Xu H.-C.Moeller KD. J. Am. Chem. Soc. 2008, 130: 13542 - 32
Frey DA.Wu N.Moeller KD. Tetrahedron Lett. 1996, 37: 8317
References
Potentials were measured using Pt working and auxiliary electrodes, an Ag/AgCl reference electrode, an electrolyte solution of 0.1 M LiClO4 in MeCN, a sweep rate of 25 mV/s, and a substrate concentration of 0.025 M. The reference electrode was calibrated using ferrocene as a standard.
25For previous examples and a brief discussion, see refs. 24 and 19c.
31For a prior example, see ref. 20a.