Synlett 2009(6): 941-944  
DOI: 10.1055/s-0028-1088215
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Enantiodivergent Synthesis of Tetra-ortho-Substituted Biphenyls by Enzymatic Desymmetrization

Kumi Okuyama, Koji Shingubara, Shin-ichiro Tsujiyama, Keisuke Suzuki, Takashi Matsumoto*
Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8551, Japan
Fax: +81(3)57343531; e-Mail: tmatumo@chem.titech.ac.jp;
Further Information

Publication History

Received 15 December 2008
Publication Date:
16 March 2009 (online)

Abstract

Axially chiral, tetra-ortho-substituted biphenyl derivatives were efficiently synthesized through desymmetrization of σ-symmetric precursors by enzyme-catalyzed hydrolysis. Both of the enantiomers were accessible in highly enantioselective manner and in high yield by suitable choice of enzyme.

    References and Notes

  • 1a Bringmann G. Mortimer AJP. Keller PA. Gresser MJ. Garner J. Breuning M. Angew. Chem. Int. Ed.  2005,  44:  5384 
  • 1b Baudoin O. Eur. J. Org. Chem.  2005,  4223 
  • 1c Cepanec I. In Synthesis of Biaryls   Elsevier; Oxford: 2004. 
  • Recent examples of stereoselective synthesis of tetra-ortho-substituted biaryls:
  • 2a Meyers AI. Nelson TD. Moorlag H. Raeson DJ. Meier A. Tetrahedron  2004,  60:  4459 
  • 2b Ohmori K. Tamiya M. Kitamura M. Kato H. Ohrui M. Suzuki K. Angew. Chem. Int. Ed.  2005,  44:  3871 
  • 2c Nishida G. Suzuki N. Noguchi K. Tanaka K. Org. Lett.  2006,  8:  3489 
  • 2d Bringmann G. Scharl H. Maksimenka K. Radacki K. Braunschweig H. Wich P. Schmuck C. Eur. J. Org. Chem.  2006,  4349 
  • 2e Nishida G. Noguchi K. Hirano M. Tanaka K. Angew. Chem. Int. Ed.  2007,  46:  3951 
  • 2f Shibata T. Yoshida S. Arai Y. Otsuka M. Endo K. Tetrahedron  2008,  64:  821 
  • 2g Ashizawa T. Tanaka S. Yamada T. Org. Lett.  2008,  10:  2521 
  • 3a Matsumoto T. Konegawa T. Nakamura T. Suzuki K. Synlett  2002,  122 
  • 3b For a review on enantioselective enzymatic desymmetrization, see: García-Urdiales E. Alfonso I. Gotor V. Chem. Rev.  2005,  105:  313 
  • Other examples of asymmetric desymmetrization of achiral biaryl derivatives:
  • 4a Hayashi T. Niizuma S. Kamikawa T. Suzuki N. Uozumi Y. J. Am. Chem. Soc.  1995,  117:  9101 
  • 4b Harada T. Ueda S. Yoshida T. Inoue A. Takeuchi M. Ogawa N. Oku A. J. Org. Chem.  1994,  59:  7575 
  • 5 Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 11 Taniguchi T. Ogasawara K. Angew. Chem. Int. Ed.  1998,  37:  1136 
  • 12 Nakayama K. Uoto K. Higashi K. Soga T. Kusama T. Chem. Pharm. Bull.  1992,  40:  1718 
6

PFL [Pseudomonas fluorescence lipase (Amano, lipase AK)], PLE [pig liver esterase (Sigma)], PCL [Pseudomonas cepacia lipase (Amano, lipase PS)], CRL [Candida rugosa lipase (Amano, lipase AY)], ANL [Aspergillus niger lipase (Amano, lipase A)], PPL [porcine pancreas lipase (Sigma, Type II)], CAL [Candida antarctica lipase (Roche Diagnostics, Chirazyme l-2)], ROL [Rhizopus oryzae
lipase (Amano, lipase F-AP15)] were tested.

7

Enantiomeric purities of biphenyls 6a-c were determined by chiral HPLC analyses [CHIRALPAK® IA (Daicel), Ø 0.46 × 25 cm, hexane-2-PrOH (9:1), 1.0 mL/min, 20 ˚C, 254 nm] t R = 9.2 min for (-)-6a, 14.5 min for (+)-6a; 12.8 min for (-)-6b, 14.8 min for (+)-6b; 9.7 min for (-)-6c, 12.7 min for (+)-6c.

8

The absolute stereostructures of 6a and 6b were determined by X-ray crystallography after derivatization [(-)-campha­nic chloride, DMAP, pyridine] to 16a and 16b, respectively (Figure  [²] ).

The absolute configuration of (+)-6c was determined by chemical correlation with (+)-6a as shown in Scheme  [5] .

Figure 2

Scheme 5Reagents and conditions: (a) MOMCl, DIPEA, CH2Cl2, 0 to 25 ˚C; (b) 1 M NaOH aq, MeOH, 0 ˚C; (c) (MeO)2SO2, NaH, DMF, 25 ˚C; (d) 10 mol% NiCl2(dppp), DIBAL, Et2O, -20 to 25 ˚C; (e) IBX, DMSO, 25 ˚C; (f) MMPP, MeOH, 0 to 25 ˚C; (g) 1 M NaOH aq, MeOH, 25 ˚C; (h) (MeO)2SO2, NaH, DMF, 25 ˚C; MMPP: mag­nesium monoperoxyphthalate hexahydrate.

9

Though less effective, (R)-6b and (R)-6c were also obtained with CAL or PCL, and (S)-6b was also obtained with PLE. It is interesting to note that the enzymes of microorganism origin (ROL, CAL, PCL) showed R preference and the enzymes of mammalian origin (PPL, PLE) showed S preference, whether necessarily or not.

10

In contrast, the racemization easily occurred under the basic conditions, as revealed by attempted methylation of the phenol in 6a: Treatment of 6a with MeI (3.0 equiv) and K2CO3 (1.5 equiv) in acetone at 50 ˚C afforded the desired methyl ether in 95% yield but with substantial decrease in ee (91%). Formation of the corresponding diacetate 1a and diol 7a, albeit in trace amount, suggested involvement of the intermoleculer acyl migration. Nonetheless, other protections, including methoxymethylation and tert-butyldimethylsilylation, proceeded without affecting enantiomeric integrity.

13

Quinone 15 proved to racemize gradually after isolation [95% ee after three weeks in a refrigerator (4 ˚C)].