Subscribe to RSS
DOI: 10.1055/s-0029-1217961
Gold(III) Chloride Catalyzed Intermolecular Dimerization of 2-Ethynylanilines: Synthesis of Substituted Quinolines
Publication History
Publication Date:
09 September 2009 (online)
Abstract
An unprecedented gold(III)-catalyzed intermolecular dimerization of 2-ethynylanilines possessing terminal triple bond offers a general synthetic pathway to a wide range of highly substituted quinolines.
Key words
2-ethynylanilines - terminal alkyne - gold(III) - intermolecular dimerization - substituted quinolines
-
1a
Michael JP. Nat. Prod. Rep. 2007, 24: 223 -
1b
Michael JP. Nat. Prod. Rep. 2005, 22: 627 -
1c
Michael JP. Nat. Prod. Rep. 2004, 21: 650 -
1d
Larsen RD.Corley EG.King AO.Carrol JD.Davis P.Verhoeven TR.Reider PJ.Labelle M.Gauthier JY.Xiang YB.Zamboni RJ. J. Org. Chem. 1996, 61: 3398 -
1e
Chen YL.Fang KC.Sheu JY.Hsu SL.Tzeng CC. J. Med. Chem. 2001, 44: 2374 -
1f
Roma G.Braccio MD.Grossi G.Mattioli F.Ghia M. Eur. J. Med. Chem. 2000, 1021 -
1g
Kalluraya B.Sreenivasa S. Farmaco 1998, 53: 399 -
1h
Dube D.Blouin M.Brideau C.Chan CC.Dermarsis S.Ethier D.Falgueyret JP.Friesen RW.Girard M.Girard Y.Guay J.Riendeau D.Tagari P.Young RN. Bioorg. Med. Chem. Lett. 1998, 8: 1255 -
1i
Kouznetzov VV.Mendez LYV.Gomez CMM. Curr. Org. Chem. 2005, 9: 141 -
1j
Arcadi A.Marinelli F.Rossi E. Tetrahedron 1999, 55: 13233 - 2
Kleeman A.Engel J.Kutscher B.Reichert D. Pharmaceutical Substances. Synthesis, Patents, Applications Thieme; Stuttgart: 2001. -
3a
Kim HM.Jin J.-L.Lee CJ.Kim N.Park KH. Bull. Chem. Soc. Jpn. 1998, 71: 2945 -
3b
Stille JK. Macromolecules 1981, 14: 870 -
3c
Agrawal AK.Jenekhe SA. Macromolecules 1991, 24: 6806 -
3d
Agrawal AK.Jenekhe SA. Chem. Mater. 1992, 4: 95 -
3e
Agrawal AK.Jenekhe AK.Jenekhe SA. Chem. Mater. 1993, 28: 895 -
3f
Agrawal AK.Jenekhe SA. Chem. Mater. 1993, 5: 633 -
3g
Jenekhe SA.Lu L.Alam MM. Macromolecules 2001, 34: 7315 -
3h
Agrawal AK.Jenekhe SA.Vanherzeele H.Meth JS. J. Phys. Chem. 1992, 96: 2837 -
3i
Jegou G.Jenekhe SA. Macromolecules 2001, 34: 7926 -
3j
Lu L.Jenekhe SA. Macromolecules 2001, 34: 6249 -
3k
Agrawal AK.Jenekhe SA. Chem. Mater. 1996, 8: 579 -
3l
Jenekhe SA.Zhang X.Chen XL.Choong VE.Gao Y.Hsieh BR. Chem. Mater. 1997, 9: 409 -
3m
Zhang X.Shetty AS.Jenekhe SA. Macromolecules 1999, 32: 7422 -
3n
Zhang X.Shetty AS.Jenekhe SA. Macromolecules 2000, 33: 2069 -
4a
Saito I.Sando S.Nakatani K. Bioorg. Med. Chem. 2001, 9: 2381 -
4b
He C.Lippard SJ. J. Am. Chem. Soc. 2001, 40: 1414 - 5
Balasubramanian M.Keay JG. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1996. p.245-300 - For traditional methods of quinoline synthesis, see:
-
6a
Jones G. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW. Pergamon Press; New York: 1996. p.167 -
6b
Cho CS.Oh BH.Kim TJ.Kim TJ.Shim SC. Chem. Commun. 2000, 1885 -
6c
Jiang B.Si YG. J. Org. Chem. 2002, 67: 9449 -
6d
Skraup H. Ber. Dtsch. Chem. Ges. 1880, 13: 2086 -
6e
Friedländer P. Ber. Dtsch. Chem. Ges. 1882, 15: 2572 -
6f
Mansake RH.Kulka M. Org. React. 1953, 7: 59 -
6g
Linderman RJ.Kirollos KS. Tetrahedron Lett. 1990, 31: 2689 -
6h
Theoclitou ME.Robinson LA. Tetrahedron Lett. 2002, 43: 3907 - For recent advances in quinoline synthesis, see:
-
7a
Horn J.Marsden SP.Nelson A.House D.Weingarten GG. Org. Lett. 2008, 10: 4117 -
7b
Xiao F.Chen Y.Liu Y.Wang J. Tetrahedron 2008, 64: 2755 -
7c
Isobe A.Takagi J.Katagiri T.Uneyama K. Org. Lett. 2008, 10: 2657 -
7d
O’Dell DK.Nicholas KM. J. Org. Chem. 2003, 68: 6427 -
7e
Taguchi K.Sakaguchi S.Ishii Y. Tetrahedron Lett. 2005, 46: 4539 -
7f
Lekhok KC.Prajapati D.Boruah RC. Synlett 2008, 655 -
7g
Jacob J.Jones WD. J. Org. Chem. 2003, 68: 3563 -
7h
Abbiati G.Arcadi A.Canevari V.Capezzuto L.Rossi E. J. Org. Chem. 2005, 70: 6454 -
7i
Amii H.Kishikawa Y.Uneyama K. Org. Lett. 2001, 3: 1109 - For reviews of gold-catalyzed organic reactions, see:
-
8a
Hashmi ASK.Hutchings GJ. Angew. Chem. Int. Ed. 2006, 45: 7896 -
8b
Hashmi ASK. Chem. Rev. 2007, 107: 3180 -
8c
Amijs CHM.Ferrer C.Echaverren AM. Chem. Commun. 2007, 698 -
8d
Fürstner A.Davies PW. Angew. Chem. Int. Ed. 2006, 46: 3410 -
8e
Patil NT.Yamamoto Y. Chem. Rev. 2008, 108: 3395 -
8f
Hoffmann-Röder A.Krause N. Org. Biomol. Chem. 2005, 3: 387 -
8g
Hashmi ASK. Angew. Chem. Int. Ed. 2005, 44: 6990 ; Angew. Chem. 2005, 117, 7150 -
8h
Arcadi A.Giuseppe SD. Curr. Org. Chem. 2004, 8: 795 -
8i
Nunez EJ.Echavarren AM. Chem. Commun. 2007, 333 -
8j
Widenhoefer RA.Han X. Eur. J. Org. Chem. 2006, 4555 -
9a
Praveen C.Sagayaraj YW.Perumal PT. Tetrahedron Lett. 2009, 50: 644 -
9b
Praveen C.Kiruthiga P.Perumal PT. Synlett 2009, 1990 -
10a
Sakai N.Annaka K.Konakahara T. J. Org. Chem. 2006, 71: 3653 -
10b
Sakai N.Annaka K.Fujita A.Sato A.Konakahara T. J. Org. Chem. 2008, 73: 4160 - Some procedures for desilylation of 2-(trimethylsilylethynyl)aniline:
-
11a
Gabriele B.Salerno G.Veltri L.Costa M.Massera C. Eur. J. Org. Chem. 2001, 4607 -
11b
Koradin C.Dohle W.Rodriguez AL.Schmid B.Knochel P. Tetrahedron 2003, 59: 1571 -
11c
Trost BM.McClory A. Angew. Chem. Int. Ed. 2007, 46: 2074 -
11d
Matsuda H,Okada S,Nakanishi H,Kato M,Horai S, andHoriishi N. inventors; JP 07126223. -
11e
Sakai N.Annaka K.Konakahara T. Tetrahedron Lett. 2006, 47: 631 ; see also ref. 12a-c -
12a
Sonogashira K. In Metal-Catalyzed Cross-Coupling Reactions Chap. 5:Diederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. p.203-229 -
12b
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467 - For the preparation of 2-iodoanilines, see:
-
13a
Ezquerra J.Pedregal C.Lamas C. J. Org. Chem. 1996, 61: 5804 -
13b
Pearson SE.Nandan S. Synthesis 2005, 2503 -
13c
Arcadi A.Cacchi S.Rosario MD.Fabrizi G.Marinelli F. J. Org. Chem. 1996, 61: 9280 -
13d
Kajigaeshi S.Kakinami T.Yamasaki H.Fujisaki S.Okamoto T. Bull. Chem. Soc. Jpn. 1988, 61: 600 -
13e
Batkowski T. Rocz. Chem. 1969, 43: 1623 ; Chem. Abstr. 1969, 72, 21575 -
13f
McCarroll A. SyntheticPages 2007, 261 ; http://www.syntheticpages.org/pages/261 -
15a
Arcadi A.Bianchi G.Marinelli F. Synthesis 2004, 610 -
15b
Alfonsi M.Arcadi A.Aschi M.Bianchi G.Marinelli F. J. Org. Chem. 2005, 70: 2265 - 16
Liu X.-Y.Ding P.Huang J.-S.Che C.-M. Org. Lett. 2007, 9: 2645 - 18
Seregin IV.Gevargyan V. J. Am. Chem. Soc. 2006, 128: 12050
References and Notes
Utilization of polar solvents like MeOH, EtOH, and wet MeCN resulted in the hydration of 2-ethynylaniline to form 2′-aminoacetophenone, and reaction in nonpolar solvents like CH2Cl2 and toluene led to the product formation only in 10% and 15% yield, respectively.
17
General Procedure
for the Gold-Catalyzed Dimerization of 2-Ethynylanilines 2a-o;
Representative Procedure for 2,4-Dibromo-6-(6,8-dibromo-4-methyl-2-quinolinyl)-phenylamine
(2l, Table 2, Entry 12)
To a mixture of AuCl3 (27.57
mg, 0.09 mmol) and AgOTf (46 mg, 0.181 mmol) under N2 was
added dry MeCN (2 mL) and stirred for 15 min at 25 ˚C.
To the mixture was added a solution of 2,4-dibromo-6-ethynylaniline
(1l, 500 mg, 1.81 mmol) in dry MeCN (2
mL) at 25 ˚C, and the whole was gradually warmed
up to reflux temperature and stirred for the specified time (Table
[²]
). After completion of
the reaction as indicated by TLC, the reaction mixture was concentrated under
reduced pressure and purified by column chromatog-raphy over silica
gel (100-200 mesh) to afford pure product 2,4-dibromo-6-(6,8-dibromo-4-methyl-2-quinolinyl)phenyl-amine(2l) as a yellow solid; mp 186-188 ˚C.
IR (KBr): 3751, 3473, 2956, 2430,1457, 766 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.51 (s,
3 H), 4.12 (br s, 2 H), 7.10 (d, 1 H, J = 2.3
Hz), 7.65 (d, 1 H, J = 2.2
Hz), 8.14 (d, 1 H, J = 2.3 Hz),
8.19 (d, 1 H, J = 2.3
Hz), 8.71 (s, 1 H). ¹³C NMR (125 MHz,
CDCl3): δ = 26.9, 109.2, 110.1, 120.7,
124.7, 126.6, 126.7, 129.9, 131.4, 132.1, 134.9, 136.0, 141.6, 143.2, 152.1,
162.8. MS (ESI+): m/z = 551 [M+ + H]+,
553 [M²+ + H]+,
555 [M4+ + H]+.
Anal. Calcd for C16H10Br4N2:
C, 34.95; H, 1.83; N, 5.09. Found: C, 35.07; H, 1.78; N, 5.00.