Subscribe to RSS
DOI: 10.1055/s-0029-1218300
Association of Intramolecular Furan Diels-Alder Reaction and N-Acyliminium Alkylation for the Synthesis of Pentacyclic Precursor of Aromathecins
Publication History
Publication Date:
21 October 2009 (online)
Abstract
A new approach for the synthesis of isoindoloquinoline and aromathecin templates is presented. These were obtained in a few steps starting from inexpensive reagents by two different strategies. The key step for both sequences was the IMFDA reaction, leading diastereoselectively to the formation of the unsaturated DE ring system of the expected alkaloid skeletons.
Key words
benzoindolizino[1,2-b]quinolinone - heterocycle - N-acyliminium - α-amidoalkylation - Diels-Alder
- 1
Verma RP.Hansch C. Chem. Rev. 2009, 109: 213 -
2a
Cinelli MA.Morrell A.Dexheimer TS.Scher ES.Pommier Y.Cushman M. J. Med. Chem. 2008, 51: 4609 -
2b
Cheng K.Rahier NJ.Eisenhauer BM.Gao R.Thomas SJ.Hecht SM. J. Am. Chem. Soc. 2005, 127: 838 - 3
Marchand C.Antony S.Kohn KW.Cushman M.Ioanoviciu A.Staker BL.Burgin AB.Stewart L.Pommier Y. Mol. Cancer Ther. 2006, 5: 287 - 4
Lin LZ.Cordell GA. Phytochemistry 1989, 28: 1295 - 5 For the first synthesis of rosettacin 1a, see:
Walraven HGM.Pandit UK. Tetrahedron 1979, 36: 321 -
6a
Dai X.Cheng C.Ding C.Yao Q.Zhang A. Synlett 2008, 2989 -
6b
Pin F.Comesse S.Sanselme M.Daïch A. J. Org. Chem. 2008, 73: 1975 -
6c
Zhou H.-B.Liu G.-S.Yao Z.-J. J. Org. Chem. 2007, 72: 6270 -
7a
Cinelli MA.Morrell A.Dexheimer TS.Scher ES.Pommier Y.Cushman M. J. Med. Chem. 2008, 51: 4609 -
7b
Xiao X.Antony S.Pommier Y.Cushman M. J. Med. Chem. 2006, 49: 1408 -
8a
Brocksom TJ.Nakamura J.Ferreira TJ.Brocksom U. J. Braz. Chem. Soc. 2001, 12: 597 -
8b
Vogel P.Cossy J.Plumet J.Arjona O. Tetrahedron 1999, 55: 13521 ; and references cited therein - For the IMFDA approaches, see:
-
9a
Boonsombat J.Zhang H.Chughtai MJ.Hartung J.Padwa A. J. Org. Chem. 2008, 73: 3539 -
9b
Ikoma M.Oikawa M.Sasaki M. Tetrahedron 2008, 64: 2740 -
9c
Kachkovskyi GO.Kolodiazhnyi OI. Tetrahedron 2007, 63: 12576 -
9d
Padwa A.Crawford KR.Straub CS. J. Org. Chem. 2006, 71: 5432 ; and references cited therein - In this area, see:
-
10a
Varlamov AV.Boltukhina EV.Zubkov FI.Nikitina EV. J. Heterocycl. Chem. 2006, 43: 1479 -
10b
Namboothiri INN.Ganesh M.Mobin SM.Cojocaru M. J. Org. Chem. 2005, 70: 2235 -
10c
Zubkov FI.Nikitina EV.Turchin KF.Aleksandrov GG.Safronova AA.Borisov RS.Varlamov AV. J. Org. Chem. 2004, 69: 432 -
10d
Zubkov FI.Nikitina EV.Turchin KF.Safronova AA.Borisov RS.Varlamov AV. Russ. Chem. Bull., Int. Ed. 2004, 53: 860 -
10e
Tromp RA.Brussee J.Van Der Gen A. Org. Biomol. Chem. 2003, 1: 3592 -
10f
Varlamov AV.Nikitina EV.Zubkov FI.Shurupova OV.Chernyshev AI. Mendeleev Commun. 2002, 12: 32 -
10g
Jacobi PA.Li Y. J. Am. Chem. Soc. 2001, 123: 9307 -
10h
Padwa A.Brodney MA.Satake K.Straub CS. J. Org. Chem. 1999, 64: 4617 -
10i
Padwa A.Brodney MA.Liu B.Satake K.Wu T.
J. Org. Chem. 1999, 64: 3595 -
10j
Lautens M.Fillion E.
J. Org. Chem. 1998, 63: 647 -
10k
Padwa A.Dimitroff M.Waterson AG.Wu T. J. Org. Chem. 1998, 63: 3986 -
10l
Padwa A.Kappe CO.Cochran JE.Snyder JP. J. Org. Chem. 1997, 62: 2786 - 11
Martin SF.Geraci LS. Tetrahedron Lett. 1988, 29: 6725 - 12
Ohba M.Kubo H.Natsutani I. Tetrahedron 2007, 63: 12689 ; and references cited therein - 13
Pin F.Comesse S.Garrigues B.Marchalín Š.Daïch A. J. Org. Chem. 2007, 72: 1181 -
14a
Ishihara Y.Kiyota Y.Goto G. Chem. Pharm. Bull. 1990, 38: 3024 -
14b
Mali RS.Yeola SN. Synthesis 1986, 755 - 16
Anzini M.Cappelli A.Vomero S.Giorgi G.Langer T.Bruni G.Romeo MR.Basile AS. J. Med. Chem. 1996, 39: 4275 - 17
Roma G.di Braccio M.Balbi A.Mazzei M.Ermili A. J. Heterocycl. Chem. 1987, 24: 329 - 19 See, for example:
Mentink G.Van Maarseveen JH.Hiemstra H. Org. Lett. 2002, 4: 3497
References and Notes
Data for 2A
Mp
123 ˚C (white solid); R
f
= 0.27 (cyclohexane-EtOAc = 1:1).
IR: ν = 1729 (C=O), 1684 (C=O),
1645 (C=C), 1444 (CH), 1426 (CH), 1290 (CO) cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 1.12-1.24
(m, 1 H, H6
α), 1.20 (t, 3 H, CH3CH2, J = 7.0 Hz),
2.37-2.47 (m, 1 H, H7), 2.63-2.75 (m,
1 H, H6
β), 2.68-2.75 (m,
1 H, H8), 3.70 (d, 1 H, H4
α, J = 15.6 Hz),
4.10 (q, 2 H, CH3CH2, J = 7.0
Hz), 4.41 (dd, 1 H, H5, J = 12.5,
3.1 Hz), 4.90 (d, 1 H, H4
β, J = 15.6 Hz),
5.10 (dd, 1 H, H1, J = 4.7,
1.6 Hz), 6.28 (d, 1 H, H3, J = 5.5
Hz), 6.42 (dd, 1 H, H2, J = 5.5,
1.6 Hz), 7.38-7.55 (m, 3 H, Har), 7.83 (d, 1
H, Har, J = 7.0
Hz). ¹³C NMR (50 MHz, CDCl3): δ = 14.4 (CH3),
36.6 (C6), 39.6 (C7), 41.1 (C4),
53.7 (C8), 57.5 (C5), 61.1 (CH2 ester),
80.1 (C1), 85.7 (Cq), 122.0 (CHar),
124.2 (CHar), 128.6 (CHar), 131.6 (CHar),
132.5 (Cq), 136.7 (C3), 137.7 (C2),
145.2 (Cq), 166.7 (C=O), 171.5 (C=O).
Anal. Calcd for C19H19NO4 (325.13):
C, 70.14; H, 5.89; N, 4.31. Found: C, 69.98; H, 5.66; N, 4.21.
Only traces of product 24 were detected by ¹H NMR.
20
Data for 3A
Mp
159 ˚C (white solid); R
f
= 0.23 (cyclohexane-EtOAc = 2:3).
IR: ν = 2903 (CH), 1731 (C=O), 1692 (C=O),
1636 (C=N), 1508 (C=C) cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 1.21-1.31
(m, 1 H, H11
α), 1.24 (t, 3 H, CH3CH2, J = 7.0 Hz), 2.42-2.53
(m, 1 H, H12), 2.77 (dd, 1 H, H13, J = 4.7, 3.9
Hz), 2.96-3.08 (m, 1 H, H11
β),
3.77 (d, 1 H, H4
α, J = 14.9
Hz), 4.10 (q, 2 H, CH3CH2, J = 7.0
Hz), 4.60 (dd, 1 H, H5, J = 12.1,
2.7 Hz), 5.02 (d, 1 H, H4
β, J = 14.9 Hz),
5.13 (dd, 1 H, H1, J = 3.9,
1.6 Hz), 6.30 (d, 1 H, H3, J = 6.3
Hz), 6.47 (dd, 1 H, H2, J = 6.3,
1.6 Hz), 7.62 (dd, 1 H, H8, J = 7.8,
7.0 Hz), 7.78-7.86 (m, 1 H, H7), 7.98 (d, 1
H, H9, J = 7.8
Hz), 8.14 (d, 1 H, H6, J = 8.6
Hz), 8.62 (s, 1 H, H10). ¹³C
NMR (50 MHz, CDCl3): δ 14.4 (CH3),
35.3 (C11), 39.6 (C12), 41.2 (C4), 53.7
(C13), 58.9 (C5), 61.1 (CH2 ester),
80.2 (C1), 85.5 (Cq), 123,8 (Cq),
127.3 (C8), 127.9 (Cq), 129.4 (C6),
129.8 (C9), 131.7 (C7), 133.2 (C10),
137.1 (C3), 137.4 (C2), 149.8 (Cq), 163.2
(C=N), 164.9 (C=O), 171.3 (C=O). Anal.
Calcd for C22H20N2O4 (376.41):
C, 70.20; H, 5.36; N, 7.44. Found: C, 70.05; H, 5.16; N, 7.28.