Subscribe to RSS
DOI: 10.1055/s-0029-1218788
Ruthenium Lewis Acid Catalyzed Asymmetric 1,3-Dipolar Cycloadditions between N-Methylnitrones and Enals
Publication History
Publication Date:
20 May 2010 (online)
Abstract
N-Methylisoxazolidines are formed in good yields and high regio-, diastereo- and enantioselectivity via asymmetric 1,3-dipolar cycloaddition of nitrones with enals catalyzed by a chiral ruthenium Lewis acid. Electronic effects in the dipole are the key to activation of these substrates for efficient catalysis.
Key words
asymmetric catalysis - Lewis acid - ruthenium - N-methyl nitrones - 1,3-dipolar cycloaddition
- 1
Lait SM.Rankic DA.Keay BA. Chem. Rev. 2007, 107: 767 -
2a
Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry Vol. 1:Padwa A. Wiley; New York: 1984. p.1 -
2b
Padwa A. In Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.1069 -
2c
Wade PA. In Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.1111 -
2d
Gothelf KV.Jørgensen KA. Chem. Rev. 1998, 98: 863 - 3
Bruin ME.Kündig EP. Chem. Commun. 1998, 2635 -
4a
Kündig EP.Saudan CM.Bernardinelli G. Angew. Chem. Int. Ed. 1999, 38: 1220 -
4b
Kündig EP.Saudan CM.Alezra V.Viton F.Bernardinelli G. Angew. Chem. Int. Ed. 2001, 40: 4481 -
4c
Kündig EP.Saudan CM.Viton F. Adv. Synth. Catal. 2001, 343: 51 -
4d
Anil Kumar PG.Pregosin PS.Vallet M.Bernardinelli G.Jazzar RF.Viton F.Kündig EP. Organometallics 2004, 23: 5410 -
4e
Alezra V.Bernardinelli G.Corminboeuf C.Frey U.Kündig EP.Merbach AE.Saudan CM.Viton F.Weber J. J. Am. Chem. Soc. 2004, 126: 4843 - 5
Rickerby J.Vallet M.Bernardinelli G.Viton F.Kündig EP. Chem. Eur. J. 2007, 13: 3354 - 6
Viton F.Kündig EP.Bernardinelli G. J. Am. Chem. Soc. 2002, 124: 4968 -
7a
Mita T.Ohtsuki N.Ikeno T.Yamada T. Org. Lett. 2002, 4: 2457 -
7b
Nagata T.Yorozu Y.Yamada T.Mukaiyama T. Angew. Chem., Int. Ed. Engl. 1995, 34: 2145 -
7c
Kezuka S.Ohtsuki N.Mita T.Kogami Y.Ashizawa T.Ikeno T.Yamada T. Bull. Chem. Soc. Jpn. 2003, 76: 2197 -
7d
Ohtsuki N.Kezuka S.Kogami Y.Mita T.Ashizawa T.Ikeno T.Yamada T. Synthesis 2003, 1462 -
7e
Shirahase M.Kanemasa S.Oderaotoshi Y. Org. Lett. 2004, 6: 675 -
7f
Shirahase M.Kanemasa S.Hasegawa M. Tetrahedron Lett. 2004, 45: 4061 -
7g
Carmona D.Lamata MP.Viguri F.Rodriguez R.Oro LA.Balana AI.Lahoz FJ.Tejero T.Merino P.Franco S.Montesa I. J. Am. Chem. Soc. 2004, 126: 2717 -
7h
Carmona D.Lamata MP.Viguri F.Rodriguez R.Oro LA.Lahoz FJ.Balana AI.Tejero T.Merino P. J. Am. Chem. Soc. 2005, 127: 13386 -
7i
Carmona D.Lamata MP.Viguri F.Rodriguez R.Fischer T.Lahoz FJ.Dobrinovitch IT.Oro LA. Adv. Synth. Catal. 2007, 349: 1751 -
7j
Carmona D.Lamata MP.Viguri F.Ferrer J.Garcia N.Lahoz FJ.Martin ML.Oro LA. Eur. J. Inorg. Chem. 2006, 3155 -
7k
Carmona D.Lamata MP.Viguri F.Rodriguez R.Lahoz FJ.Oro LA. Chem. Eur. J. 2007, 13: 9746 -
7l
Carmona D.Lamata MP.Viguri F.Rodriguez R.Lahoz FJ.Fabra MJ.Oro LA. Tetrahedron: Asymmetry 2009, 20: 1197 -
7m
Kano T.Hashimoto T.Maruoka K. J. Am. Chem. Soc. 2005, 127: 11927 -
7n
Hashimoto T.Omote M.Kano T.Maruoka K. Org. Lett. 2007, 9: 4805 -
7o
Hashimoto T.Omote M.Hato Y.Kano T.Maruoka K. Chem. Asian J. 2008, 3: 407 -
7p
Wang YW.Wolf J.Zavalij P.Doyle MP. Angew. Chem. Int. Ed. 2008, 47: 1439 -
8a
Jen WS.Wiener JJM.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 9874 -
8b
Karlsson S.Hogberg H.-E. Tetrahedron 2002, 13: 923 -
8c
Karlsson S.Hogberg H.-E. Eur. J. Org. Chem. 2003, 2782 -
8d
Puglisi A.Benaglia M.Cinquini M.Cozzi F.Celentano G. Eur. J. Org. Chem. 2004, 567 -
8e
Lemay M.Trant J.Ogilvie WW. Tetrahedron 2007, 63: 11644 -
8f
Chow SS.Nevalainen M.Evans CA.Johannes CW. Tetrahedron Lett. 2007, 48: 277 -
9a
Bãdoiu A.Brinkmann Y.Viton F.Kündig EP. Pure Appl. Chem. 2008, 5: 1013 -
9b
Bãdoiu A.Bernardinelli G.Mareda J.Kündig EP.Viton F. Chem. Asian J. 2008, 3: 1298 ; Erratum: Chem. Asian J. 2009, 4, 1021 - 10
Brinkmann Y.Reniguntala JM.Jazzar R.Bernardinelli G.Kündig EP. Tetrahedron 2007, 63: 8413 -
11a
Dicken CM.DeShong P. J. Org. Chem. 1982, 47: 2047 -
11b
Chan KS.Yeung ML.Chan W.Wang R.-J.Mak TCW. J. Org. Chem. 1995, 60: 1741 - 13
Kanemasa S.Uemura T.Wada E. Tetrahedron Lett. 1992, 33: 7889 - 16
Altomare A.Burla MC.Camalli M.Cascarano GL.Giacovazzo C.Guagliardi A.Moliterni AGG.Polidori G.Spagna R. J. Appl. Crystallogr. 1999, 32: 115 - 17
Hall SR.Flack HD.Stewart JM. Xtal 3.2 User’s Manual Universities of Western Australia and Maryland; Australia: 1992.
References
Optimization of the reaction conditions was performed with 3e and 2 in the presence of 5 mol% of (R,R)-1. Screening showed -5 ˚C to be the optimal temperature for this combination of substrates and catalyst. Parallel runs in anhyd and commercial grade CH2Cl2, respectively, led to the same result (85% yield, 94:6 endo/exo, 92% ee); consequently, solvent screening was done with nondried, undistilled, commercial grade solvents. The same results as above were obtained with THF and EtOAc. Lower yields (60%) and selectivities were obtained when using CHCl3 (>95:5 endo/exo, 81% ee) or toluene (84:16 endo/exo, 90% ee). Alcohols, DMF, DMSO, or acetone led to extensive decomposition of the nitrone. Surprisingly, good selectivities (95:5 endo/exo, 88% ee) were obtained when running the reaction in H2O (at 0 ˚C), albeit in low yield (30%).
14For the X-ray structure of (S,S)-1˙methacrolein, see ref. 4a. The approach of the nitrone is modeled.
15Crystallographic data for compound 4d have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC-773807. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.