RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245992
© Georg Thieme Verlag KG Stuttgart · New York
Der Beitrag der Bildanalyse für die Differenzialdiagnose der fokalen Nierenparenchymveränderungen
Image Analysis in the Differential Diagnosis of Renal Parenchyma LesionsPublikationsverlauf
eingereicht: 6.4.2010
angenommen: 15.12.2010
Publikationsdatum:
10. Juni 2011 (online)

Zusammenfassung
Ziel: Die Quantifizierung der Echointensität könnte einen Beitrag für die Differenzialdiagnose von fokalen Nierenveränderungen leisten. Material und Methoden: Bei 145 Patienten mit fokalen Nierenparenchymveränderungen wurden digitalisierte Bilder ausgewertet (40 Angiomyolipome [A], 70 Nierenzellkarzinome [B], 20 Pseudotumoren [C] sowie 15 andere fokale Veränderungen [D]). Mit Photoshop® wurden die durchschnittlichen Grauwerte der Läsion (definiert als Echointensität, EF) und deren Varianz s2 (als Maß für Inhomogenität, IF) gemessen. Als Vergleich diente die umgebende Nierenrinde. Berechnet wurden Echointensitätsquotient, Echointensitätsindex, Inhomogenitätsquotient und Inhomogenitätsindex. Ergebnisse: Angiomyolipome hatten einen höheren Echointensitätsquotient EQ und Echointensitätsindex EI als Nierenzellkarzinome, Pseudotumoren sowie andere Läsionen (p < 0,001). Pseudotumoren hatten einen niedrigeren Inhomogenitätsquotienten IQ als Angiomyolipome (p < 0,001) und Nierenzellkarzinome (p < 0,05). Ein Echointensitätsquotient ≥ 2,0 und Echointensitätsindex ≥ 0,5 waren typisch für Angiomyolipome; bei Tumoren < 3 cm lag die Sensitivität bei 96,4 %, Spezifität bei 97,3 %. Schlussfolgerung: Die quantitative Echointensitätsmessung objektiviert die Differenzialdiagnose fokaler Nierenveränderungen. Die Unterscheidung typischer Angiomyolipome von anderen Läsionen wird dadurch erleichtert.
Abstract
Purpose: Visual analysis of echo intensity is of importance for the differential diagnosis of focal renal lesions. Quantification of the echo intensity and of other parameters might help with differential diagnosis. Materials and Methods: In 145 patients with focal renal lesions, digitized images were evaluated (40 angiomyolipomas [group A], 70 renal cell carcinomas [group B], 20 pseudo-tumors [group C] and 15 other focal lesions in group D). With Photoshop®, the average grayscale values of the lesion (defined as echo intensity focal, EF) and its variance s2 (as expression of the inhomogeneity focal, IF) were measured. These measurements were compared to the renal cortex (echo intensity renal cortex = ER, inhomogeneity renal renal cortex = IR). Other calculated parameters: Echo intensity quotient, echo intensity index, inhomogeneity quotient and inhomogeneity index. Results: Angiomyolipomas had a higher echo intensity quotient EQ and echo intensity index EI than renal cell carcinomas, pseudo-tumors and other lesions (p < 0.001). Pseudo-tumors had a lower inhomogeneity quotient than angiomyolipomas (p < 0.001), renal cell carcinomas (p < 0.05). Echo intensity quotient EQ ≥ 2.0 and echo intensity index EI ≥ 0.5 were typical for angiomyolipomas with a sensitivity of 96.4 % and a specificity of 97.3 % for tumors < 3 cm. Conclusion: Quantitative echo intensity measurements enhance the differential diagnosis of focal renal lesions. The differentiation of typical angiomyolipomas to other lesions could be improved.
Key words
abdomen - ultrasound - neoplasms
Literatur
- 1 Madsen K M, Tisher C C. Anatomy of Kidney. In Brenner B M, Rector F C, editors The Kidney.. Philadelphia: Saunders; 2004: 3-72
MissingFormLabel
- 2 Tuma J. Niere mit abnormer Form. In Tuma J, Trinkler F, editors Sonographische Differentialdiagnose: Krankheiten des Urogenitalsystems.. Köln: Deutscher Ärzte-Verlag; 2009: 69-75
MissingFormLabel
- 3 Tuma J, Dietrich C. Niere. In Dietrich C, editor Ultraschall-Kurs.. Köln: Deutscher Ärzte-Verlag; 2005: 219-248
MissingFormLabel
- 4
Lafortune M, Constantin A, Breton G et al.
Sonography of the hypertrophied column of Bertin.
Am J Roentgenol.
1986;
146
53-56
MissingFormLabel
- 5
Claudon M, Cosgrove D, Albrecht T et al.
Guidelines and good clinical practice recommendations for contrast enhanced ultrasound
(CEUS) – update 2008.
Ultraschall in Med.
2008;
29
28-44
MissingFormLabel
- 6
Fan L, Lianfang D, Jinfang X et al.
Diagnostic efficacy of contrast-enhanced ultrasonography in solid renal parenchymal
lesions with maximum diameters of 5 cm.
J Ultrasound Med.
2008;
27
875-885
MissingFormLabel
- 7
Nilsson A.
Contrast-enhanced ultrasound of the kidneys.
Eur Radiol.
2004;
14
104-109
MissingFormLabel
- 8
Strunk H M.
Renale Angiomyolipome.
Ultraschall in Med.
2002;
6
367-372
MissingFormLabel
- 9
Forman H P, Middleton W D, Melson G L et al.
Hyperechoic renal cell carcinomas: increase in detection at US.
Radiology.
1993;
188
431-434
MissingFormLabel
- 10
Hajdu S I, Foote Jr F W.
Angiomyolipoma of the kidney: report of 27 cases and review of the literature.
J Urol.
1969;
102
396-401
MissingFormLabel
- 11
Nelson C P, Sanda M G.
Contemporary diagnosis and management of renal angiomyolipoma.
J Urol.
2002;
168
1315-1325
MissingFormLabel
- 12 DeLaney T F. Overview of soft tissue sarcoma. In Rose B D, editor UpToDate. 2010
MissingFormLabel
- 13
Benjaminov O, Gutman H, Nyabanda R et al.
Myxoid liposarcoma: an unusual presentation.
Am J Roentgenol.
2007;
188
817-821
MissingFormLabel
- 14
Kim J K, Kim S H, Jang Y J et al.
Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo
chemical shift FLASH MR imaging.
Radiology.
2006;
239
174-180
MissingFormLabel
- 15
Simpfendorfer C, Herts B R, Motta-Ramirez G A et al.
Angiomyolipoma with minimal fat on MDCT: can counts of negative-attenuation pixels
aid diagnosis?.
Am J Roentgenol.
2009;
192
438-443
MissingFormLabel
- 16
Kim J Y, Kim J K, Kim N et al.
CT histogram analysis: differentiation of angiomyolipoma without visible fat from
renal cell carcinoma at CT imaging.
Radiology.
2008;
246
472-479
MissingFormLabel
- 17
Catalano O A, Samir A E, Sahani D V et al.
Pixel distribution analysis: can it be used to distinguish clear cell carcinomas from
angiomyolipomas with minimal fat?.
Radiology.
2008;
247
738-746
MissingFormLabel
- 18
Blickstein I, Goldchmit R, Strano S D et al.
Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison
using gain-assisted densitometric evaluation of sonograms.
J Ultrasound Med.
1995;
14
661-664
MissingFormLabel
- 19
Blickstein I, Goldchmit R, Strano S D et al.
Quantitative comparison of two distinct echogenic structures appearing on the same
image using gain-assisted densitometric evaluation of sonograms (GADES).
J Ultrasound Med.
1995;
14
509-513
MissingFormLabel
- 20
Blickstein I, Smith-Levitin M, Gurewitsch E et al.
Computed sonography: requiem to echogenicity assessment?.
Gynecol Obstet Invest.
1997;
44
244-248
MissingFormLabel
- 21
Chen D R, Chang R F, Huang Y L.
Computer-aided diagnosis applied to US of solid breast nodules by using neural networks.
Radiology.
1999;
213
407-412
MissingFormLabel
- 22
Manley J A, O’Neill W C.
How echogenic is echogenic? Quantitative acoustics of the renal cortex.
Am J Kidney Dis.
2001;
37
706-711
MissingFormLabel
- 23
Sabetai M M, Tegos T J, Nicolaides A N et al.
Reproducibility of computer-quantified carotid plaque echogenicity: can we overcome
the subjectivity?.
Stroke.
2000;
31
2189-2196
MissingFormLabel
- 24
Smith-Levitin M, Blickstein I, Albrecht-Shach A A et al.
Quantitative assessment of gray-level perception: observers’ accuracy is dependent
on density differences.
Ultrasound Obstet Gynecol.
1997;
10
346-349
MissingFormLabel
- 25
Strauss S, Gavish E, Gottlieb P et al.
Interobserver and intraobserver variability in the sonographic assessment of fatty
liver.
Am J Roentgenol.
2007;
189
W320-W323
MissingFormLabel
- 26
Moghazi S, Jones E, Schroepple J et al.
Correlation of renal histopathology with sonographic findings.
Kidney Int.
2005;
67
1515-1520
MissingFormLabel
- 27
Webb M, Yeshua H, Zelber-Sagi S et al.
Diagnostic value of a computerized hepatorenal index for sonographic quantification
of liver steatosis.
Am J Roentgenol.
2009;
192
909-914
MissingFormLabel
- 28
Sim J S, Seo C S, Kim S H et al.
Differentiation of small hyperechoic renal cell carcinoma from angiomyolipoma: computer-aided
tissue echo quantification.
J Ultrasound Med.
1999;
18
261-264
MissingFormLabel
- 29
Tuma J, Schwarzenbach H R, Novakova B et al.
The quantitative measurement of the echogenicity of the renal parenchyma.
Praxis.
2008;
97
297-303
MissingFormLabel
- 30 International Standard ISO 5725-2: Accuracy (trueness and precision) of measurement
methods and results – Part 2: Basic method for the determination of repeatability
and reproducibility of a standardmeasurement method. I. nternational Organisation for Standardization; 1994: 1-13.
MissingFormLabel
- 31
Smith Jr T, Lange G D, Marks W B.
Fractal methods and results in cellular morphology – dimensions, lacunarity and multifractals.
J Neurosci Methods.
1996;
69
123-136
MissingFormLabel
- 32
Hricak H, Cruz C, Romanski R et al.
Renal parenchymal disease: sonographic-histologic correlation.
Radiology.
1982;
144
141-147
MissingFormLabel
- 33
Rosenfield A T, Siegel N J.
Renal parenchymal disease: histopathologic-sonographic correlation.
Am J Roentgenol.
1981;
137
793-798
MissingFormLabel
- 34
Tsau Y K, Lee P I, Chang L Y et al.
Correlation of quantitative renal cortical echogenicity with renal function in pediatric
renal diseases.
Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi.
1997;
38
276-281
MissingFormLabel
- 35
Blickstein I.
Quantitative assessment of sonographic image echogenicity by transmission densitometry:
fetal liver model.
J Ultrasound Med.
1993;
12
567-571
MissingFormLabel
- 36
Eggert P, Debus F, Kreller-Laugwitz G et al.
Densitometric measurement of renal echogenicity in infants and naked eye evaluation:
a comparison.
Pediatr Radiol.
1991;
21
111-113
MissingFormLabel
- 37
Grawitz P.
Demonstration eines grossen Angio-Myo-Lipoms der Niere.
Dtsch Med Wochenschr.
1900;
26
290
MissingFormLabel
Prof. Christoph F. Dietrich
Innere Medizin 2, Caritas-Krankenhaus
Uhlandstr. 7
97980 Bad Mergentheim
Telefon: ++ 49/79 31/58 22 01
Fax: ++ 49/79 31/58 22 90
eMail: Christoph.Dietrich@ckbm.de