Subscribe to RSS
DOI: 10.1055/s-0030-1248496
Geschlechtsspezifische Prädiktoren von Institutionalisierung im Alter – Ergebnisse der Leipziger Längsschnittstudie in der Altenbevölkerung (LEILA 75+)
Gender-Specific Predictors of Institutionalisation in the Elderly – Results of the Leipzig Longitudinal Study of the Aged (LEILA 75+)Publication History
Publication Date:
04 August 2010 (online)
Zusammenfassung
Anliegen Den meisten Menschen ist es ein zentrales Bedürfnis, in der vertrauten Umgebung und Häuslichkeit alt zu werden. Psychische Störungen wie Demenzen und Depressionen zählen zu den häufigsten Gründen für Heimeinweisungen im Alter. Die vorliegende Arbeit hat das Ziel, Geschlechtsunterschiede in Prädiktoren von Institutionalisierung zu untersuchen. Methode Die Datengrundlage bildet die Leipziger Langzeitstudie in der Altenbevölkerung (LEILA 75+), eine bevölkerungsrepräsentative Längsschnittstudie (n = 1058, 75+). Ergebnisse Für Frauen konnten kognitive Beeinträchtigungen sowie ein subjektiv schlechter Gesundheitszustand als starke Prädiktoren von Institutionalisierung nachgewiesen werden, während bei Männern Krankenhausaufenthalte innerhalb des zurückliegenden Jahres mit vorzeitigen Heimübergängen assoziiert waren. Für Männer gibt es außerdem Hinweise auf erhöhte Risiken im Zusammenhang mit dem Erleben von Verlusten in den Bereichen des sozioökonomischen Status und der Partnerschaft durch Verwitwung. Schlussfolgerungen Geschlechtsspezifischer Unterschiede haben eine hohe Relevanz bei der Entwicklung von Interventionen zur Vermeidung bzw. Verzögerung von Heimeintritten.
Abstract
Objective Especially given the different socialization and life conditions of men and women, it could not be assumed that factors leading to nursing home admission (NHA) can be equally applied to both genders. We aimed to determine gender-specific predictors of NHA. Methods Data were derived from the Leipzig Longitudinal Study of the Aged, a population-based study of individuals aged 75 years and older. 1,058 older adults were interviewed six times on average every 1.4 years. Sociodemographic, clinical, and psychometric variables were obtained. Cox proportional hazards regression was used to determine predictors of NHA. Results 10.3 % of men and 19.5 % of women (p < 0.001) were admitted to nursing home during the study period. The mean time to nursing home was 7.2 years for men and 6.8 years for women. Characteristics associated with a shorter time to NHA were increased age for men and women; cognitive impairment, poor self-rated health status, and less than two specialist's visits in the preceding 12 months for women, and being unmarried, moderate educational status, and hospitalization in the preceding 12 months were predictors of NHA for men. Conclusions Gender differences in prediction of NHA do actually exist. The inclusion of gender-specific factors in design and application of interventions to support individuals at home and delay or prevent NHA appears to be warranted.
Schlüsselwörter
Institutionalisierung - Heimübertritt - Geschlechtsunterschiede - Prädiktoren
Keywords
institutionalization - nursing home admission - predictors - old age - elderly
Literatur
- 1 Kinsella K, Velkoff V A. An aging world: 2001. International Population Reports.. Washington DC: US Bureau of Census, US Goverment Printing Office; 2001
- 2 Statistisches Bundesamt. Pflegestatistik 2007. Pflege im Rahmen der Pflegeversicherung. Deutschlandergebnisse.. Wiesbaden: Statistisches Bundesamt; 2008
- 3 Weyerer S, Schäufele M, Hendlmeier I. Besondere und traditionelle stationäre Betreuung demenzkranker Menschen im Vergleich. Z Gerontol Geriatrie. 2005; 38 85-94
- 4 Aguero-Torres H, Strauss E von, Viitanen M et al. Institutionalization in the elderly: the role of chronic diseases and dementia. Cross-sectional and longitudinal data from a population-based study. J Clin Epidemiol. 2001; 54 795-801
- 5 Luck T, Busse A, Hensel A et al. Mild cognitive impairment and development of dementia. Psychiat Prax. 2008; 35 331-336
- 6 Hensel A, Riedel-Heller S G. Measuring cognitive change in patients with suspected dementia-change norms are lacking for psychometric instruments. Psychiat Prax. 2008; 35 251-254
- 7 Riedel-Heller S G, Busse A, Aurich C et al. Prevalence of dementia according to DSM-III-R and ICD-10: results of the Leipzig Longitudinal Study of the Aged (LEILA75+) Part 1. Br J Psychiatry. 2001; 179 250-254
- 8 Zaudig M, Hiller W. SIDAM-Handbuch Strukturiertes Interview für die Diagnose einer Demenz vom Alzheimer-Typ, der Multiinfarkt- (oder vaskulären) Demenz und Demenzen anderer Ätiologie nach DSM-III-R, DSM-IV, ICD-10.. Bern: Verlag Hans Huber; 1996
- 9 Folstein M F, Folstein S E, McHugh P R. „Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12 189-198
- 10 Wenger G C, Tucker I. Using network variation in practice: identification of support network type. Health Soc Care Community. 2002; 10 28-35
- 11 Schneekloth U, Pottkoff P, Piekara R et al. Help and need of care in institutions. Results of the representative research project „Potentials and limitations of independent living”.. Stuttgart: Kohlhammer; 1996
- 12 Schneekloth U, Müller U. Help and need of care in institutions. Results of the representative research project „Potentials and limitations of independent living in institutions”.. Stuttgart: Kohlhammer; 1997
- 13 Hautzinger M, Bailer M. Allgemeine Depressions-Skala: Manual.. Weinheim: Beltz Test GmbH; 1993
- 14 Radloff L S. The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement. 1977; 1 385-401
- 15 Tomiak M, Berthelot J M, Guimond E et al. Factors associated with nursing-home entry for elders in Manitoba, Canada. J Gerontol A Biol Sci Med Sci. 2000; 55 M279-M287
- 16 Breeze E, Sloggett A, Fletcher A. Socioeconomic and demographic predictors of mortality and institutional residence among middle aged and older people: results from the Longitudinal Study. J Epidemiol Community Health. 1999; 53 765-774
- 17 Grundy E, Glaser K. Trends in, and transitions to, institutional residence among older people in England and Wales, 1971–91. J Epidemiol Community Health. 1997; 51 531-540
- 18 Freedman V A, Berkman L F, Rapp S R et al. Family networks: predictors of nursing home entry. Am J Public Health. 1994; 84 843-845
- 19 Luppa M, Luck T, Weyerer S et al. Gender differences in predictors of nursing home placement in the elderly: a systematic review. Int Psychogeriatrics. 2009; 21 1015-1025
- 20 Nihtila E, Martikainen P. Why older people living with a spouse are less likely to be institutionalized: the role of socioeconomic factors and health characteristics. Scand J Public Health. 2008; 36 35-43
- 21 Attias-Donfut C. The dynamics of elderly support. The transmission of solidarity patterns between generations. Z Gerontol Geriatrie. 2001; 34 9-15
- 22 Arber S. Gender, marital status, and aging: Linking material, health, and social resources. J Aging Studies. 2004; 18 91-108
- 23 Ajrouch K J, Blandon A Y, Antonucci T C. Social networks among men and women: the effects of age and socioeconomic status. J Gerontol B Psychol Sci Soc Sci. 2005; 60 S311-S317
- 24 Lyyra T M, Heikkinen R L. Perceived social support and mortality in older people. J Gerontol B Psychol Sci Soc Sci. 2006; 61 S147-S152
- 25 Arber S, Ginn J. Gender and inequalities in health in later life. Soc Sci Med. 1993; 36 33-46
- 26 Gaugler J E, Duval S, Anderson K A et al. Predicting nursing home admission in the U. S.: a meta-analysis. BMC Geriatrics. 2007; 7 13
- 27 Courtenay W H. Behavioral factors associated with disease, injury, and death among men: Evidence and implications for prevention. J Men's Studies. 2000; 9 81-142
- 28 Verbrugge L M. Gender and health: an update on hypotheses and evidence. J Health Soc Behav. 1985; 26 156-182
- 29 BMFSFJ .Gender-Datenreport. Datenreport zur Gleichstellung von Frauen und Männern in der Bundesrepublik Deutschland.. München: BMFSFJ; 2005
- 30 Lyyra T M, Leskinen E, Jylha M et al. Self-rated health and mortality in older men and women: a time-dependent covariate analysis. Arch Gerontol Geriatr. 2009; 48 14-18
- 31 D'Agostino R B, Belanger A J, Markson E W et al. Development of health risk appraisal functions in the presence of multiple indicators: the Framingham Study nursing home institutionalization model. Stat Med. 1995; 14 1757-1770
- 32 Ness J, Ahmed A, Aronow W S. Demographics and payment characteristics of nursing home residents in the United States: a 23-year trend. J Gerontol A Biol Sci Med Sci. 2004; 59 1213-1217
- 33 BMFSFJ .Fünfter Bericht zur Lage der älteren Generation in der Bundesrepublik Deutschland.. Berlin: BMFSFJ; 2005
Dr. Melanie Luppa, Dipl.-Psych.
Universität Leipzig, Klinik und Poliklinik für
Psychiatrie und Psychotherapie, Public Health Research Unit
Semmelweisstraße 10
04103 Leipzig
Email: Melanie.Luppa@medizin.uni-leipzig.de