Subscribe to RSS
DOI: 10.1055/s-0030-1258106
Highly Stereoselective Preparation of Chiral α-Substituted Sulfides from α-Chloro Sulfides via 1,2-Asymmetric Induction
Publication History
Publication Date:
30 June 2010 (online)
Abstract
A C-S stereogenic center is created with efficient stereocontrol by 1,2-asymmetric induction due to a vicinal C-O stereogenic center. Propargylic, allylic, and alkyl sulfides are readily prepared in good yield and stereoselectivity from α-chloro sulfides. The allylic sulfide have been converted to the corresponding sulfoxide/sulfilimine/sulfur ylide and subjected to [2,3]-sigmatropic rearrangement. The efficient 1,3-chirality transfer observed in this reaction eventually results in a net 1,4-chirality transfer.
Key words
α-chloro sulfide - rearrangement - sulfoxide - stereoselective synthesis - asymmetric induction
- Supporting Information for this article is available online:
- Supporting Information
- 1
Mitzel TM.Palomo C.Jendza K. J. Org. Chem. 2002, 67: 136 - 2
Frimpong K.Wzorek J.Lawlor C.Spencer K.Mitzel T. J. Org. Chem. 2009, 74: 5861 - 3
Pelc MJ.Zakarian A. Tetrahedron Lett. 2006, 47: 7519 - 4
Armstrong A.Challinor L.Moir JH. Angew. Chem. Int. Ed. 2007, 46: 5369 - 5
Ma M.Peng L.Li C.Zhang X.Wang J. J. Am. Chem. Soc. 2005, 127: 15016 -
6a
Wee AGH.Shi Q.Wang Z.Hatton K. Tetrahedron: Asymmetry 2003, 14: 897 -
6b
Bach T.Korber CJ. J. Org. Chem. 2000, 65: 2358 -
7a
Inoue M.Miyazaki K.Uehara H.Maruyama M.Hirama M. Proc. Natl. Sci. U.S.A. 2004, 101: 12013 -
7b For a review, see:
Dilworth BM.McKervey MA. Tetrahedron 1986, 42: 3731 -
8a
Normant H.Castro CR. C. R. Hebd. Seances Acad. Sci. 1964, 259: 830 -
8b
Gross H.Hoft E. Angew. Chem., Int. Ed. Engl. 1967, 6: 335 -
8c
Ogura K.Fujitha M.Takahashi K.Iida H. Chem. Lett. 1982, 11: 1697 -
8d
Cohen T.Matz JR. J. Am. Chem. Soc. 1985, 106: 6902 -
8e
Nakatsuka S.Takai K.Utimoto K. J. Org. Chem. 1986, 51: 5045 - 9
Chu DTH. J. Org. Chem. 1983, 48: 3571 -
10a
Paterson I.Fleming I. Tetrahedron Lett. 1979, 993 -
10b
Paterson I. Tetrahedron 1988, 44: 4207 -
10c
Reetz MT.Huttenhain S.Walz P.Lowe U. Tetrahedron Lett. 1979, 4971 -
10d
Groth U.Huhn T.Richter N. Liebigs Ann. Chem. 1993, 49 -
11a
Bohme H. Ber. Dtsch. Chem. Ges. 1936, 69: 1610 -
11b
Vedejs E.Mullins MJ.Renga JM.Singer SP. Tetrahedron Lett. 1978, 519 -
11c
Arai K.Iwamura H.Oki M. Bull. Chem. Soc. Jpn. 1975, 48: 3319 - 12
Bordwell FG.Pitt BM. J. Am. Chem. Soc. 1955, 77: 572 - 13 For the preparation of the acetate
corresponding to sulfide 6, see:
Taniguchi N. J. Org. Chem. 2006, 71: 7874 ; the resulting acetate was hydrolyzed and the hydroxy group protected as its silyl ether - 14 Anhydrous zinc bromide was prepared
as a 1.5 M solution in dry THF by heating at reflux for 2 h a 1.5
M solution of DCE containing excess acid washed zinc, see:
Brown DS.Charreau P.Hansson T.Ley SV. Tetrahedron 1991, 47: 1311 - 16 (Z)-1-Octenylmagnesium
bromide was prepared from (Z)-1-bromo
octene and Mg turnings while (E)-1-octenyl-magnesium
chloride was prepared from (E)-1-iodo
octene by halogen-metal exchange, see:
Ren H.Krasovskiy A.Knochel P. Org. Lett. 2004, 6: 4215 -
20a
Trost BM.Belletire JL.Godleski S.McDougal PG.Balkovec JM. J. Org. Chem. 1986, 51: 2370 -
20b
Trost BM.Bunt RC.Pulley SR. J. Org. Chem. 1994, 59: 4202 -
21a
Miller EG.Rayner DR.Mislow K. J. Am. Chem. Soc. 1966, 88: 3139 -
21b
Braverman S.Stabinsky Y. Chem. Commun. 1967, 270 -
21c
Evans DA.Andrews GC. Acc. Chem. Res. 1974, 7: 147 - 22
Armstrong A.Emmerson DPG. Org. Lett. 2009, 11: 1547 -
23a
McLaughlin JL. J. Nat. Prod. 2008, 71: 1311 -
23b
Davoren JE.Harcken C.Martin SF. J. Org. Chem. 2008, 73: 391 - 24
Petranek J.Vecera M. Collect. Czech. Chem. Commun. 1959, 24: 2191 -
25a
Kirmse W.Kapps M. Chem. Ber. 1968, 101: 994 -
25b
Doyle MP.Griffin JH.Chinn MS.van Leusen D. J. Org. Chem. 1984, 49: 1917 - 26
Calo V.Nacci A.Fiandanese V.Volpe A. Tetrahedron Lett. 1997, 38: 3289
References and Notes
The reaction of chloro sulfide 7 with 1-octynylmagnesium chloride proceeded to afford the product in lower yield (50%), while reaction with 1-lithio octyne did not yield any desired product.
17
General Experimental
Procedure
To a solution of 1-octyne (165 mg, 1.5 mmol)
in dry THF (0.8 mL) cooled at -10 ˚C
was added i-PrMgCl˙LiCl (1 mL, 1.5
mmol, 1.5 M in THF) and stirred for 30 min at the same temperature.
To the so generated Grignard reagent, ZnBr2 (1.1 mL,
1.65 mmol, 1.5 M in THF) was added at 0 ˚C and stirred
for 30 min. To the organozinc reagent maintained at 0 ˚C
was added a solution of chloro sulfide (0.5 mmol) in benzene (5
mL), the reaction mixture stirred gradually allowing it to attain
r.t., and stirred further for a period of 7 h when TLC examination
indicated complete consumption of the chloro sulfide. The reaction
mixture was cooled to 0 ˚C and quenched by the
addition of an aq sat. NH4Cl solution. It was allowed
to warm to r.t. and diluted with
Et2O (5 mL),
the layers were separated and aqueous layer extracted with Et2O
(3 × 10 mL). The combined organic layers
were washed with H2O (5 mL), brine (5 mL), dried over
Na2SO4, and the solvent evaporated under reduced pressure
to afford a crude compound which was purified by column chromatography
using hexanes as the eluent to afford the pure product 9a (192 mg, 0.43 mmol) in 86% yield as
a liquid. TLC: R
f
= 0.34 (hexanes). IR (KBr):
3445, 3063, 2954, 2928, 1586, 1463, 1384, 1253, 1094, 827, 837,
777, 695 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 7.60-7.30
(m, 10 H), 4.91 (d, J = 6.8
Hz, 1 H), 4.16 (td, J = 2.3,
6.8 Hz, 1 H), 2.16 (dt, J = 2.3,
6.8 Hz, 2 H), 1.50-1.15 (m, 8 H), 1.00-0.90 (m,
12 H), 0.20 (s, 3 H), 0.0 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 142.00, 135.62,
132.11, 128.58, 127.82, 127.69, 127.36, 126.89, 87.32, 77.45, 48.91,
31.45, 28.51, 28.47, 25.89, 22.62, 18.35, 14.20, -4.55, -4.83.
ESI-MS: m/z 469 [M + NH4]+.
ESI-HRMS: m/z calcd for C28H40ONaSiS: 475.2467;
found: 475.2466.
Substrate 13 was prepared by deprotection of acetonide moiety in 10 followed by protection of the resulting diol, see Supporting Information.
19The signals for the olefinic, methine protons of the acetonide and CH 2OBn appear downfield in ester 18 compared to the corresponding protons of ester 19, see Supporting Information.