Subscribe to RSS
DOI: 10.1055/s-0030-1258121
Epoxides to α-Mercapto-γ-lactones via Ionic Liquid Promoted Mercaptoacetylative Ring-Opening-Ring-Closing Cascade
Publication History
Publication Date:
30 June 2010 (online)
Abstract
Task-specific ionic liquid promoted {[Bmim]OH} one-pot synthesis of α-mercapto-γ-lactones is reported. The present protocol involves regioselective epoxide ring opening and intramolecular translactonisation cascade. A variety of epoxides undergo this ring-opening-ring-closing cascade with 2-methyl-2-phenyl-1,3-oxathiolan-5-one to afford α-mercapto-γ-lactones diastereoselectively in good to excellent yields. After isolation of the product, the ionic liquid [Bmim]OH could be easily recovered and reused without any loss of efficiency.
Key words
γ-lactones - epoxides - ionic liquids - cascade reactions - translactonization - stereoselective synthesis
-
1a
Koch SSC.Chamberlin AR. In Studies in Natural Products Chemistry Vol. 16: . Elsevier; Amsterdam: 1995. p.687-725 -
1b
Friedrichsen W. In Comprehensive Heterocyclic Chemistry II Vol. 2:Bird CW. Pergamon Press; Oxford: 1996. p.351 -
1c
Rao YS. Chem. Rev. 1976, 76: 625 -
1d
Haffmann HMR.Rabe J. Angew. Chem., Int. Ed. Engl. 1985, 24: 94 -
1e
Mulzer J.Salimi N.Hartl H. Tetrahedron: Asymmetry 1993, 4: 457 -
1f
Schmitz WD.Messerschmidt NB.Romo D. J. Org. Chem. 1998, 63: 2058 -
1g
Maier MS.Marimon DIG.Stortz C.-A.Alder MJ. J. Nat. Prod. 1999, 62: 1565 -
1h
Hislop J.-A.Hunt MB.Fielder S.Rowan DD. J. Agric. Food Chem. 2004, 52: 7075 -
1i
Frediani P.Rosi L.Frediani M.Bartolucci C.Bambagiotti-Alberti M. J. Agric. Food Chem. 2007, 55: 3877 -
1j
Schlutt B.Moran N.Schieberle P.Hofmann T. J. Agric. Food Chem. 2007, 55: 9634 -
1k
Pertino MW.Theoduloz C.Rodriguez JA.Yanez T.Lazo V.Schmeda-Hirschmann G. J. Nat. Prod. 2010, 73: 639 - 2
Lambert JD.Rice JE.Hong J.Hou Z.Yang CS. Bioorg. Med. Chem. Lett. 2005, 15: 873 -
3a
Harchen C.Bruchner R. Angew. Chem. Int. Ed. 1997, 36: 2750 -
3b
Drioli S.Felluga F.Forzato C.Nitti P.Pitacco G.Valentin E. J. Org. Chem. 1998, 63: 2385 -
3c
de March P.Figueredo M.Font J.Raya J. Org. Lett. 2000, 2: 163 -
3d
Delhaye L.Merschaert A.Diker K.Houpis IN. Synthesis 2006, 1437 -
4a
Gutierrez JLG.Jimenez-Cruz F.Espinosa NR. Tetrahedron Lett. 2005, 46: 803 -
4b
Burstein C.Tschan S.Xie X.Glorius F. Synthesis 2006, 2418 -
4c
Tiecco M.Testaferri L.Temperini A.Terlizzi R.Bagnoli L.Marini F.Santi C. Synlett 2006, 587 -
4d
Vitale M.Prestat G.Lopes D.Madec D.Poli G. Synlett 2006, 2231 -
4e
Cho CS.Shim HS. Tetrahedron Lett. 2006, 47: 3835 -
4f
Li Z.Gao Y.Jiao Z.Wu N.Wang DZ.Yang Z. Org. Lett. 2008, 10: 5163 -
4g
Park HS.Kwon DW.Lee K.Kim YH. Tetrahedron Lett. 2008, 49: 1616 -
4h
Antoniotti S.Dunach E. Tetrahedron Lett. 2009, 50: 2536 -
4i
Gooßen LJ.Ohlmann DM.Dierker M. Green Chem. 2010, 12: 197 -
4j
Dias LC.de Castro IBD.Steil LJ.Augusto T. Tetrahedron Lett. 2006, 47: 213 -
4k
Olejniczak T.Mironowicz A.Wawrzenczyk C. Bioorg. Chem. 2003, 31: 199 -
5a
Tietze LF.Beifuss U. Angew. Chem., Int. Ed. Engl. 1993, 32: 131 -
5b
Enders D.Grndal C.Huttl MRM. Angew. Chem. Int. Ed. 2007, 46: 1570 -
5c
Nicolaou KC.Chen JS. Chem. Soc. Rev. 2009, 38: 2993 -
5d
Morten CJ.Byers JA.Van Dyke AR.Vilotijevic I.Jamison TF. Chem. Soc. Rev. 2009, 38: 3175 -
6a
Domino Reactions in Organic Synthesis
Tietze LF.Brasche G.Gericke KM. Wiley-VCH; Weinheim: 2006. -
6b
Fustero S.Jimenez D.Sanchez-Rosello M.del Pozo C. J. Am. Chem. Soc. 2007, 129: 6700 -
6c
Bi H.-P.Liu X.-Y.Gou F.-R.Guo L.-N.Duan X.-H.Shu X.-Z.Liang Y.-M. Angew. Chem. Int. Ed. 2007, 46: 7068 -
6d
Rolfe A.Young K.Hanson PR. Eur. J. Org. Chem. 2008, 31: 5254 -
7a
Kozytska MV.Dudley GB. Chem. Commun. 2005, 3047 -
7b
Bontemps S.Gornitzka H.Bouhadir G.Miqueu K.Bourissou D. Angew. Chem. Int. Ed. 2006, 45: 1611 -
7c
Bontemps S.Bouhadir G.Miqueu K.Bourissou D. J. Am. Chem. Soc. 2006, 128: 12056 -
7d
Tejedor D.Mendez-Abt G.Gonzalez-Platas J.Ramirez MA.Garca-Tellado F. Chem. Commun. 2009, 2368 -
8a
Nakamura H.Shim J.-G.Yamamoto Y. J. Am. Chem. Soc. 1997, 119: 8113 -
8b
Nakamura H.Aoyagi K.Shim J.-G.Yamamoto Y. J. Am. Chem. Soc. 2001, 123: 372 -
8c
Hili R.Yudin AK. Angew. Chem. Int. Ed. 2008, 47: 4188 -
8d
Baktharaman S.Hili R.Yudin AK. Aldrichimica Acta 2008, 41: 109 -
8e
Kimura M.Tamaki T.Nakata M.Tohyama K.Tamaru Y. Angew. Chem. Int. Ed. 2008, 120: 5887 -
8f
Hili R.Yudin AK. J. Am. Chem. Soc. 2009, 131: 16404 -
9a
Corey EJ.Russey WE.Ortiz de Montellano PR.
J. Am. Chem. Soc. 1966, 88: 4750 -
9b
van Tamelen EE.Willett JD.Clayton RB.Lord KE. J. Am. Chem. Soc. 1966, 88: 4752 -
9c
Neighbors JD.Beutler JA.Wiemer DF. J. Org. Chem. 2005, 70: 925 -
9d
Vilotijevic I.Jamison TF. Angew. Chem. Int. Ed. 2009, 48: 5250 -
9e
Topczewski JJ.Callahan MP.Neighbors JD.Wiemer DF. J. Am. Chem. Soc. 2009, 131: 14630 -
10a
Samuel S.-MC.Gordon WK. J. Chem. Soc., Perkin Trans. 1 1991, 3225 -
10b
Ravelo JL.Radriguez CM.Martin VS. J. Organomet. Chem. 2006, 691: 5326 -
11a
Chowdhury S.Mohan RS.Scott JL. Tetrahedron 2007, 63: 2363 -
11b
Martins MAP.Frizzo CP.Moreira DN.Zanatta N.Bonacorso HG. Chem. Rev. 2008, 108: 2015 -
11c
Prechtl MHG.Scholten JD.Nuto BAD.Dupont J. Curr. Org. Chem. 2009, 13: 1705 -
11d
Sureshkumar M.Lee C.-K. J. Mol. Catal. B: Enzym. 2009, 60: 1 -
11e
Olivier-Bourbigou H.Magna L.Morvan D. Appl. Catal., A 2010, 373: 1 -
11f
Giernoth R. Angew. Chem. Int. Ed. 2010, 49: 2834 -
12a
Ionic Liquids in Synthesis
Wasserscheid P.Welton T. Wiley-VCH; Weinheim: 2008. -
12b
Calo V.Nacci A.Monopoli A.Cotugno P. Angew. Chem. Int. Ed. 2009, 48: 6101 -
12c
Gong K.Wang H.-L.Luo J.Liu Z.-L. J. Heterocycl. Chem. 2009, 46: 1145 -
12d
Yavari I.Kowsari E. Mol. Diversity 2009, 13: 519 -
12e
Yadav LDS. .Srivastava VP. Tetrahedron Lett. 2010, 51: 739 -
13a
Yadav LDS.Patel R.Rai VK.Srivastava VP. Tetrahedron Lett. 2007, 48: 7793 -
13b
Yadav LDS.Patel R.Srivastava VP. Synlett 2008, 583 -
13c
Yadav LDS.Singh S.Rai VK. Tetrahedron Lett. 2009, 50: 2208 -
13d
Yadav LDS.Singh S.Rai VK. Green Chem. 2009, 11: 878 -
13e
Yadav LDS.Kapoor R. . Synlett 2009, 1055 -
13f
Yadav LDS.Rai VK.Singh S.Singh P. Tetrahedron Lett. 2010, 51: 1662 - 14
Yadav LDS.Yadav S.Rai VK. Tetrahedron 2005, 61: 10013 - 17
Brace NO. J. Fluorine Chem. 2003, 123: 237
References and Notes
General Procedure
for the Synthesis of α-Mercapto-γ-lactones 4
To
a stirred solution of 2-methyl-2-phenyl-1,3-oxathiolan-5-one (2, 1 mmol) in [Bmim]OH-H2O
(0.5-1 mL, 4:1), epoxide 1 (1
mmol) was added dropwise and stirred at r.t. for 30 min, then the
reaction mixture was stirred at 50 ˚C for 6-15
h (Table
[¹]
). After
completion of reaction (monitored by TLC), the reaction mixture
was cooled to r.t., diluted with H2O (5 mL), and extracted
with EtOAc (3 × 5 mL), dried over anhyd
Na2SO4, filtered, and evaporated to dryness.
A
mixture of the crude product 4 and acetophenone
thus obtained was subjected to silica gel column chromatography using
EtOAc-n-hexane as eluent to
afford an analytically pure sample of 4 and
acetophenone, which was recycled to 2.¹4 After
isolation of the product, the remaining aqueous layer containing
the ionic liquid was washed with Et2O (2 × 5
mL) to remove any organic impurity, dried under vacuum at 90 ˚C
to afford [Bmim]OH, which was used in subsequent
runs without further purification.
Physical
Data of Representative CompoundsCompound 4a (
cis
/
trans
= 60:40)
cis: IR (film): νmax = 2995,
2876, 2554, 1765, 1607, 1583, 1455 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.25
(1 H, m), 2.39 (1 H, ddd, J = 13.2,
6.8, 6.7 Hz), 3.85 (1 H, dd, J = 7.7,
6.7 Hz), 5.28 (1 H, dd, J = 6.9,
6.8 Hz), 7.21-7.32 (m, 5 Harom). ¹³C
NMR (100 MHz, CDCl3-TMS): δ = 41.1,
46.2, 80.1, 127.1, 128.8, 129.1, 140.1, 178.4. MS (EI): m/z = 194 [M+].
Anal. Calcd for C10H10O2S: C, 61.83; H,
5.19. Found: C, 62.2; H, 5.02.
trans:
IR (film): νmax = 2993, 2876, 2558,
1767, 1609, 1582, 1453 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.20
(1 H, m), 2.46 (1 H, ddd, J = 13.2,
6.8, 6.9 Hz), 3.88 (1 H, dd, J = 7.4,
6.9 Hz), 5.05 (1 H, dd, J = 10.3,
6.8 Hz), 7.23-7.36 (m, 5Harom).
Compound 4c
(
cis
/
trans
= 67:33)
cis: IR (film): νmax = 2998,
2875, 2554, 1768, 1605, 1585, 1456 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.25
(1 H, m), 2.39 (1 H, ddd, J = 13.2,
6.8, 6.7 Hz), 3.83 (1 H, dd, J = 7.7,
6.7 Hz), 5.29 (1 H, dd, J = 6.9,
6.8 Hz), 7.21-7.34 (m, 2 Harom,), 7.58-7.61
(m, 2 Harom). ¹³C NMR (100
MHz, CDCl3-TMS): δ = 41.6,
46.9, 81.1, 129.6, 130.2, 132.3, 143.5, 178.5. MS (EI): m/z = 228 [M+],
230 [M + 2+]. Anal.
Calcd for C10H9ClO2S: C, 52.52;
H, 3.97. Found: C, 52.15; H, 4.29.
trans:
IR (film): νmax = 3001, 2876, 2552,
1770, 1609, 1580, 1457 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.20
(1 H, m), 2.46 (1 H, ddd, J = 13.2,
6.8, 6.9 Hz), 3.86 (1 H, dd, J = 7.4,
6.9 Hz), 5.07 (1 H, dd, J = 10.3,
6.8 Hz), 7.23-7.36 (m, 2 Harom), 7.57-7.62
(m, 2 Harom).
Isolation of 3a
and 3c and their Conversion into the Corresponding α-Mercapto-γ-lactones
4a and 4c
The procedure followed was the same as described
above for the synthesis of 4 except that
the stirring time in this case was only 25-30 min at r.t.
Purified by silica gel chromatography using EtOAc-n-hexane as eluent to afford an analytically pure
sample of 3a and 3c.
Finally, the intermediate alcohols 3a and 3c (1 mmol) were quantitatively converted
into the corresponding γ-lactones 4a and 4b by stirring at 50 ˚C
in [Bmim]OH-H2O (4:1) for
6.5 h.
Physical Data of Intermediate
Alcohols 3a and 3cCompound 3a (Diastereomeric Mixture = 60:40)
Major:
IR (film): νmax = 3435, 2965, 2878,
1775, 1605, 1581, 1456 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.18
(3 H, s), 2.13-2.17 (2 H, m), 3.99 (1 H, dd, J = 12.0, 7.8
Hz), 4.91 (1 H, dd, J = 7.6,
5.7 Hz), 7.21-7.36 (m, 10Harom). ¹³C
NMR (100 MHz; CDCl3-TMS): δ = 20.8, 37.2,
44.7, 77.2, 98.7, 127.1, 127.8, 128.4, 128.8, 129.1, 129.5, 139.8,
141.1, 177.2. MS (EI): m/z = 314 [M+].
Anal. Calcd for C18H18O3S: C, 68.76;
H, 5.77. Found: C, 68.98; H, 5.40.
Minor: ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.19
(3 H, s), 2.15-2.20 (2 H, m), 3.89 (1 H, t, J = 2.2 Hz),
4.98 (1 H, dd, J = 7.8,
5.7 Hz), 7.21-7.34 (m, 10 Harom).
Compound 3c (Diasteriomeric Mixture = 67:33)
Major:
IR (film): νmax = 3440, 2985, 2876,
1772, 1607, 1584, 1457 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.21
(3 H, s), 2.16-2.20 (2 H, m), 3.92 (1 H, dd, J = 12.1, 7.8
Hz), 4.95 (1 H, dd, J = 7.5,
5.7 Hz), 7.21-7.52 (m, 7 Harom), 7.70-7.90
(m, 2 Harom). ¹³C NMR (100
MHz, CDCl3-TMS): δ = 21.7,
37.4, 44.9, 77.3, 98.6, 127.7, 128.9, 129.2, 129.8, 130.1, 132.2,
139.7, 142.5, 177.3. MS (EI): m/z = 348 [M+],
350 [M + 2+]. Anal.
Calcd for C18H17ClO3S: C, 61.97; H,
4.91. Found: C, 62.20; H, 5.28.
Minor: ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.19
(3 H, s), 2.17-2.22 (2 H, m), 3.89 (1 H, t, J = 2.3 Hz),
4.98 (1 H, dd, J = 7.8,
5.6 Hz), 7.22-7.54 (m, 7 Harom), 7.72 (m, 2 Harom).