Subscribe to RSS
DOI: 10.1055/s-0030-1258229
Formation of 1,2-Dihydroquinoline-3-carboxylic Acid Derivatives from Methyl 3-(Arylamino)acrylates with Hydrogen Iodide
Publication History
Publication Date:
25 August 2010 (online)

Abstract
The reaction of methyl 3-(arylamino)acrylates with hydrogen iodide gave 1,2-dihydroquinoline-3-carboxylic acid derivatives at room temperature. This reaction proceeds efficiently in alcoholic solvent; bulky tert-butyl alcohol is the best solvent to give the 1,2-dihydroquinoline derivatives. It is particularly interesting that hydrogen iodide is the most efficient acid to achieve this reaction in tert-butyl alcohol. Various substituents at the phenyl ring are applicable. Compounds bearing meta-substituted phenyl ring with electron-donating group led to the corresponding 1,2-dihydroquinoline derivatives in good yields.
Key words
cyclization - hydrogen iodide - heterocycles - solvent effects - substituent effects
- 1a
Kothandaraman P.Foo SJ.Chan PWH. J. Org. Chem. 2009, 74: 5947MissingFormLabel - 1b
Liu X.-Y.Ding P.Huang J.-S.Che C.-M. Org. Lett. 2007, 9: 2645MissingFormLabel - 1c
Yi CS.Yun SY. J. Am. Chem. Soc. 2005, 127: 17000MissingFormLabel - 1d
Luo Y.Li Z.Li C.-J. Org. Lett. 2005, 7: 2675MissingFormLabel - 1e
Yi CS.Yun SY.Guzei IA. J. Am. Chem. Soc. 2005, 127: 5782MissingFormLabel - 1f
Williamson NM.Ward AD. Tetrahedron 2005, 61: 155MissingFormLabel - 1g
Ranu BC.Hajra A.Dey SS.Jana U. Tetrahedron 2003, 59: 813MissingFormLabel - 1h
Wiliamson NM.March DR.Ward AD. Tetrahedron Lett. 1995, 42: 7721MissingFormLabel - 2a
Martínez-Estíbalez U.Sotomayor N.Lete E. Tetrahedron Lett. 2007, 48: 2919MissingFormLabel - 2b
Theeraladanon C.Arisawa M.Nishida A.Nakagawa M. Tetrahedron 2004, 60: 3017MissingFormLabel - 3a
Migneault D.Bernstein MA.Lau CK. Can. J. Chem. 1995, 73: 1506MissingFormLabel - 3b
Grignon-Dubois M.Diaba F.Grellier-Marly M.-C. Synthesis 1994, 800MissingFormLabel - 3c
Qiang LG.Baine NH. J. Org. Chem. 1988, 53: 4218MissingFormLabel - 3d
Arduini A.Bigi F.Casiraghi G.Casnati G.Sartori G. Synthesis 1981, 975MissingFormLabel - 3e
Dauphinee GA.Forrest TP. Can. J. Chem. 1978, 56: 632MissingFormLabel - 4a
Voutchkova AM.Gnanamgari D.Jakobsche CE.Butler C.Miller SJ.Parr J.Crabtree RH. J. Organomet. Chem. 2008, 693: 1815MissingFormLabel - 4b
Fukuzumi S.Fujita M.Noura S.Ohkubo K.Suenobu T.Araki Y.Ito O. J. Phys. Chem. A 2001, 105: 1857MissingFormLabel - 4c
Zhu D.Kochi JK. Organometallics 1999, 18: 161MissingFormLabel - 4d
Fukuzumi S.Kitano T.Ishikawa K.Tanaka T. Chem. Lett. 1989, 1599MissingFormLabel - 5a
Amiot F.Cointeaux L.Silve EJ.Alexakis A. Tetrahedron 2004, 60: 8221MissingFormLabel - 5b
Rezgui F.Mangeney P.Alexakis A. Tetrahedron Lett. 1999, 40: 6241MissingFormLabel - 5c
Paris D.Cottin M.Demonchaux P.Augert G.Dupassieux P.Lenoir P.Peck MJ.Jasserand D. J. Med. Chem. 1995, 38: 669MissingFormLabel - 5d
Goldstein SW.Dambek PJ. Synthesis 1989, 221MissingFormLabel - 5e
Ramadas SR.Krishna MV. Curr. Sci. 1981, 50: 120MissingFormLabel - 5f
Crawforth CE.Meth-Cohn O.Russell CA.
J. Chem. Soc., Perkin Trans. 1 1972, 2807MissingFormLabel - 5g
Elderfield RC.Wark BH. J. Org. Chem. 1962, 27: 543MissingFormLabel - 6a
Li H.Wang J.Xie H.Zu L.Jian W.Duesler EN.Wang W. Org. Lett. 2007, 9: 965MissingFormLabel - 6b
Ballini R.Bosica G.Fiorini D.Palmieri A. Green Chem. 2005, 7: 825MissingFormLabel - 6c
Yan M.-C.Tu Z.Lin C.Ko S.Hsu J.Yao C.-F.
J. Org. Chem. 2004, 69: 1565MissingFormLabel - 6d
Kobayashi K.Nakahashi R.Mano M.Morikawa O.Konisi H. Bull. Chem. Soc. Jpn. 2003, 76: 1257MissingFormLabel - 6e
Apple IA.Meth-Cohn O. ARKIVOC 2002, (vi): 4MissingFormLabel - 6f
Kobayashi K.Nakahashi R.Shimizu A.Kitamura T.Morikawa O.Konishi H. J. Chem. Soc., Perkin Trans. 1 1999, 1547MissingFormLabel - 6g
Kobayashi K.Takabatake H.Kitamura T.Morikawa O.Konishi H. Bull. Chem. Soc. Jpn. 1999, 70: 1697MissingFormLabel - 6h
Yavari I.Esmaili AA.Ramazani A.Bolbol-Amiri AR. Monatsh. Chem. 1997, 128: 927MissingFormLabel - 7
Matsumoto S.Ogura K. Tetrahedron Lett. 2007, 48: 1117 - 8
Sridharam Y.Avendaño C.Menéndez C. Tetrahedron 2007, 63: 673 - 9a
Cui H.-L.Feng X.Peng J.Lei J.Jiang K.Chen Y.-C. Angew. Chem. Int. Ed. 2009, 48: 5737MissingFormLabel - 9b
Gusak KN.Kozlov NG. Russ. J. Org. Chem. 2007, 43: 706MissingFormLabel - 9c
Lu G.Malinakova HC. J. Org. Chem. 2004, 69: 4701MissingFormLabel - 9d
Cheng Y.Yang H.Meth-Cohn O. Org. Biomol. Chem. 2003, 1: 3605MissingFormLabel - 9e
Yamaguchi R.Tanaka M.Matsuda T.Okano T.Nagura T.Fujita K. Tetrahedron Lett. 2002, 43: 8871MissingFormLabel - 9f
Yamaguchi R.Nakayasu T.Hatano B.Nagura T.Kozima S.Fujita K. Tetrahedron 2001, 57: 109MissingFormLabel - 9g
Yamaguchi R.Omoto Y.Miyake M.Fujita K. Chem. Lett. 1998, 547MissingFormLabel - 9h
Sanechika K.Kajigaeshi S.Kanemasa S. Chem. Lett. 1977, 861MissingFormLabel - 10
Mohri K.Kanie A.Horiguchi Y.Isobe K. Heterocycles 1999, 51: 2377 - 12a
Harris JM.McManus SP. In Nucleophilicity American Chemical Society; Washington DC: 1987.MissingFormLabel - 12b
Smith MB.March J. March’s Advanced Organic Chemistry 5th ed.: Wiley; New York: 2001. p.438-445MissingFormLabel - 13
Fu PP.Harvey RG. Chem. Rev. 1978, 78: 317 - 14a
Hoggett JG.Moodie RB.Penton JR.Schofield K. In Nitration and Aromatic Reactivity Cambridge University Press; Cambridge: 1971. p.122-163MissingFormLabel - 14b
Smith MB.March J. March’s Advanced Organic Chemistry 5th ed.: Wiley; New York: 2001. p.681-695MissingFormLabel - 15a
Bhatt MV.Kulkarni SU. Synthesis 1983, 249MissingFormLabel - 15b
Tiecco M. Synthesis 1988, 749MissingFormLabel - 16
Bozell JJ.Hegedus LS. J. Org. Chem. 1981, 46: 2561MissingFormLabel - 17
Nicolau KC.Gross JL.Kerr MA. J. Heterocycl. Chem. 1996, 33: 735 - 18
Bottomley W. Tetrahedron Lett. 1967, 1997 - 19
Zhou J.-C. Molecules 1999, 4: M118
References
MeO-5a can be converted to 5a in 86% yield by the reaction of MeO-5a with HI in MeCN.