Subscribe to RSS
DOI: 10.1055/s-0030-1258229
Formation of 1,2-Dihydroquinoline-3-carboxylic Acid Derivatives from Methyl 3-(Arylamino)acrylates with Hydrogen Iodide
Publication History
Publication Date:
25 August 2010 (online)
Abstract
The reaction of methyl 3-(arylamino)acrylates with hydrogen iodide gave 1,2-dihydroquinoline-3-carboxylic acid derivatives at room temperature. This reaction proceeds efficiently in alcoholic solvent; bulky tert-butyl alcohol is the best solvent to give the 1,2-dihydroquinoline derivatives. It is particularly interesting that hydrogen iodide is the most efficient acid to achieve this reaction in tert-butyl alcohol. Various substituents at the phenyl ring are applicable. Compounds bearing meta-substituted phenyl ring with electron-donating group led to the corresponding 1,2-dihydroquinoline derivatives in good yields.
Key words
cyclization - hydrogen iodide - heterocycles - solvent effects - substituent effects
-
1a
Kothandaraman P.Foo SJ.Chan PWH. J. Org. Chem. 2009, 74: 5947 -
1b
Liu X.-Y.Ding P.Huang J.-S.Che C.-M. Org. Lett. 2007, 9: 2645 -
1c
Yi CS.Yun SY. J. Am. Chem. Soc. 2005, 127: 17000 -
1d
Luo Y.Li Z.Li C.-J. Org. Lett. 2005, 7: 2675 -
1e
Yi CS.Yun SY.Guzei IA. J. Am. Chem. Soc. 2005, 127: 5782 -
1f
Williamson NM.Ward AD. Tetrahedron 2005, 61: 155 -
1g
Ranu BC.Hajra A.Dey SS.Jana U. Tetrahedron 2003, 59: 813 -
1h
Wiliamson NM.March DR.Ward AD. Tetrahedron Lett. 1995, 42: 7721 -
2a
Martínez-Estíbalez U.Sotomayor N.Lete E. Tetrahedron Lett. 2007, 48: 2919 -
2b
Theeraladanon C.Arisawa M.Nishida A.Nakagawa M. Tetrahedron 2004, 60: 3017 -
3a
Migneault D.Bernstein MA.Lau CK. Can. J. Chem. 1995, 73: 1506 -
3b
Grignon-Dubois M.Diaba F.Grellier-Marly M.-C. Synthesis 1994, 800 -
3c
Qiang LG.Baine NH. J. Org. Chem. 1988, 53: 4218 -
3d
Arduini A.Bigi F.Casiraghi G.Casnati G.Sartori G. Synthesis 1981, 975 -
3e
Dauphinee GA.Forrest TP. Can. J. Chem. 1978, 56: 632 -
4a
Voutchkova AM.Gnanamgari D.Jakobsche CE.Butler C.Miller SJ.Parr J.Crabtree RH. J. Organomet. Chem. 2008, 693: 1815 -
4b
Fukuzumi S.Fujita M.Noura S.Ohkubo K.Suenobu T.Araki Y.Ito O. J. Phys. Chem. A 2001, 105: 1857 -
4c
Zhu D.Kochi JK. Organometallics 1999, 18: 161 -
4d
Fukuzumi S.Kitano T.Ishikawa K.Tanaka T. Chem. Lett. 1989, 1599 -
5a
Amiot F.Cointeaux L.Silve EJ.Alexakis A. Tetrahedron 2004, 60: 8221 -
5b
Rezgui F.Mangeney P.Alexakis A. Tetrahedron Lett. 1999, 40: 6241 -
5c
Paris D.Cottin M.Demonchaux P.Augert G.Dupassieux P.Lenoir P.Peck MJ.Jasserand D. J. Med. Chem. 1995, 38: 669 -
5d
Goldstein SW.Dambek PJ. Synthesis 1989, 221 -
5e
Ramadas SR.Krishna MV. Curr. Sci. 1981, 50: 120 -
5f
Crawforth CE.Meth-Cohn O.Russell CA.
J. Chem. Soc., Perkin Trans. 1 1972, 2807 -
5g
Elderfield RC.Wark BH. J. Org. Chem. 1962, 27: 543 -
6a
Li H.Wang J.Xie H.Zu L.Jian W.Duesler EN.Wang W. Org. Lett. 2007, 9: 965 -
6b
Ballini R.Bosica G.Fiorini D.Palmieri A. Green Chem. 2005, 7: 825 -
6c
Yan M.-C.Tu Z.Lin C.Ko S.Hsu J.Yao C.-F.
J. Org. Chem. 2004, 69: 1565 -
6d
Kobayashi K.Nakahashi R.Mano M.Morikawa O.Konisi H. Bull. Chem. Soc. Jpn. 2003, 76: 1257 -
6e
Apple IA.Meth-Cohn O. ARKIVOC 2002, (vi): 4 -
6f
Kobayashi K.Nakahashi R.Shimizu A.Kitamura T.Morikawa O.Konishi H. J. Chem. Soc., Perkin Trans. 1 1999, 1547 -
6g
Kobayashi K.Takabatake H.Kitamura T.Morikawa O.Konishi H. Bull. Chem. Soc. Jpn. 1999, 70: 1697 -
6h
Yavari I.Esmaili AA.Ramazani A.Bolbol-Amiri AR. Monatsh. Chem. 1997, 128: 927 - 7
Matsumoto S.Ogura K. Tetrahedron Lett. 2007, 48: 1117 - 8
Sridharam Y.Avendaño C.Menéndez C. Tetrahedron 2007, 63: 673 -
9a
Cui H.-L.Feng X.Peng J.Lei J.Jiang K.Chen Y.-C. Angew. Chem. Int. Ed. 2009, 48: 5737 -
9b
Gusak KN.Kozlov NG. Russ. J. Org. Chem. 2007, 43: 706 -
9c
Lu G.Malinakova HC. J. Org. Chem. 2004, 69: 4701 -
9d
Cheng Y.Yang H.Meth-Cohn O. Org. Biomol. Chem. 2003, 1: 3605 -
9e
Yamaguchi R.Tanaka M.Matsuda T.Okano T.Nagura T.Fujita K. Tetrahedron Lett. 2002, 43: 8871 -
9f
Yamaguchi R.Nakayasu T.Hatano B.Nagura T.Kozima S.Fujita K. Tetrahedron 2001, 57: 109 -
9g
Yamaguchi R.Omoto Y.Miyake M.Fujita K. Chem. Lett. 1998, 547 -
9h
Sanechika K.Kajigaeshi S.Kanemasa S. Chem. Lett. 1977, 861 - 10
Mohri K.Kanie A.Horiguchi Y.Isobe K. Heterocycles 1999, 51: 2377 -
12a
Harris JM.McManus SP. In Nucleophilicity American Chemical Society; Washington DC: 1987. -
12b
Smith MB.March J. March’s Advanced Organic Chemistry 5th ed.: Wiley; New York: 2001. p.438-445 - 13
Fu PP.Harvey RG. Chem. Rev. 1978, 78: 317 -
14a
Hoggett JG.Moodie RB.Penton JR.Schofield K. In Nitration and Aromatic Reactivity Cambridge University Press; Cambridge: 1971. p.122-163 -
14b
Smith MB.March J. March’s Advanced Organic Chemistry 5th ed.: Wiley; New York: 2001. p.681-695 -
15a
Bhatt MV.Kulkarni SU. Synthesis 1983, 249 -
15b
Tiecco M. Synthesis 1988, 749 - 16
Bozell JJ.Hegedus LS. J. Org. Chem. 1981, 46: 2561 - 17
Nicolau KC.Gross JL.Kerr MA. J. Heterocycl. Chem. 1996, 33: 735 - 18
Bottomley W. Tetrahedron Lett. 1967, 1997 - 19
Zhou J.-C. Molecules 1999, 4: M118
References
MeO-5a can be converted to 5a in 86% yield by the reaction of MeO-5a with HI in MeCN.