Subscribe to RSS
DOI: 10.1055/s-0030-1259699
Palladium-Catalyzed, One-Pot, Three-Component Approach to α-Alkynyl Indoles from o-Bromo-(2,2-dibromovinyl)benzenes, Terminal Alkynes and Arylamines
Publication History
Publication Date:
08 March 2011 (online)
Abstract
α-Alkynyl indoles were efficiently synthesized in one pot from o-bromo-(2,2-dibromovinyl)benzenes, terminal alkynes, and arylamines via a palladium-catalyzed three-component coupling process.
Key words
multi-component coupling - o-halo-(2,2-dihalovinyl)-benzene - alkyne - arylamine - indole - palladium-catalyzed reaction
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Zhang H.-J.Wei J.Zhao F.Liang Y.Wang Z.Xi Z. Chem. Commun. 2010, 46: 7439 -
1b
Wang C.Deng L.Yan J.Wang H.Luo Q.Zhang W.-X.Xi Z. Chem. Commun. 2009, 4414 -
2a
Zhang H.-J.Song Z.Wang C.Bruneau C.Xi Z. Tetrahedron Lett. 2008, 49: 624 -
2b
Xi Z.Song Z.Liu G.Liu X.Takahashi T. J. Org. Chem. 2006, 71: 3154 -
2c
Xi Z.Liu X.Lu J.Bao F.Fan H.Li Z.Takahashi T. J. Org. Chem. 2004, 69: 8547 - For some recent reviews, see:
-
3a
Humphrey GR.Kuethe JT. Chem. Rev. 2006, 106: 2875 -
3b
Cacchi S.Fabrizi G. Chem. Rev. 2005, 105: 2873 - For recent examples on transition-metal-catalyzed indolization, see:
-
4a
Oh CH.Karmakar S.Park H.Ahn Y.Kim JW. J. Am. Chem. Soc. 2010, 132: 1792 -
4b
Zeng X.Kinjo R.Donnadieu B.Bertrand G. Angew. Chem. Int. Ed. 2010, 49: 942 -
4c
Isono N.Lautens M. Org. Lett. 2009, 11: 1329 -
4d
Ohta Y.Chiba H.Oishi S.Fujii N.Ohno H. J. Org. Chem. 2009, 74: 7052 -
4e
Bernini R.Fabrizi G.Sferrazza A.Cacchi S. Angew. Chem. Int. Ed. 2009, 48: 8078 -
4f
Okamoto N.Miwa Y.Minami H.Takeda K.Yanada R. Angew. Chem. Int. Ed. 2009, 48: 9693 -
4g
Ohno H.Ohta Y.Oishi S.Fujii N. Angew. Chem. Int. Ed. 2007, 46: 2295 -
4h
Nakamura I.Yamagishi U.Song D.Konta S.Yamamoto Y. Angew. Chem. Int. Ed. 2007, 46: 2284 -
4i
Liu F.Ma D. J. Org. Chem. 2007, 72: 4844 - For recent examples on palladium-catalyzed indolization, see:
-
5a
Han X.Lu X. Org. Lett. 2010, 12: 3336 -
5b
Chen Z.Zhu J.Xie H.Li S.Wu Y.Gong Y. Synlett 2010, 1418 -
5c
Baxter CA.Cleator E.Alam M.Davies AJ.Goodyear A.O’Hagan M. Org. Lett. 2010, 12: 668 -
5d
Nakamura I.Nemoto T.Shiraiwa N.Terada M. Org. Lett. 2009, 11: 1055 -
5e
Shi Z.Zhang C.Li S.Pan D.Ding S.Cui Y.Jiao N. Angew. Chem. Int. Ed. 2009, 48: 4572 -
5f
Worlikar SA.Neuenswander B.Lushington GH.Larock RC. J. Comb. Chem. 2009, 11: 875 -
5g
Weinrich ML.Beck HP. Tetrahedron Lett. 2009, 50: 6968 -
5h
Shore G.Morin S.Debasis M.Organ MC. Chem. Eur. J. 2008, 14: 1351 -
5i
Jensen T.Pedersen H.Bang-Andersen B.Madsen R.Jørgensen M. Angew. Chem. Int. Ed. 2008, 47: 888 -
5j
Zhang X.Liu A.Chen W. Org. Lett. 2008, 10: 3849 -
5k
Wang Z.Wu J. Tetrahedron 2008, 64: 1736 -
5l
Shen Z.Lu X. Tetrahedron 2006, 62: 10896 -
5m
Barluenga J.Fernández MA.Aznar F.Valdés C. Chem. Eur. J. 2005, 11: 2276 -
5n
Wagaw S.Yang BH.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 6621 -
6a
Cui X.Li J.Fu Y.Liu L.Guo Q.-X. Tetrahedron Lett. 2008, 49: 3458 -
6b
Ackermann L.Sandmann R.Villar A.Kaspar LT. Tetrahedron 2008, 64: 769 -
6c
Shen M.Li G.Lu BZ.Hossain A.Roschangar F.Farina V.Senanayake CH. Org. Lett. 2004, 6: 4129 -
6d
Cacchi S.Fabrizi G.Parisi LM. Synthesis 2004, 1889 -
6e
Ujjainwalla F.Warner D. Tetrahedron Lett. 1998, 39: 5355 -
6f
Wensbo D.Eriksson A.Jeschke T.Annby U.Gronowitz S.Cohen LA. Tetrahedron Lett. 1993, 34: 2823 -
6g
Larock RC.Yum EK. J. Am. Chem. Soc. 1991, 113: 6689 -
7a
Tang Z.Hu Q. Adv. Synth. Catal. 2006, 348: 846 -
7b
Kaspar LT.Ackermann L. Tetrahedron 2005, 61: 11311 -
8a
Barluenga J.Jiménez-Aquino A.Aznar F.Valdés C. J. Am. Chem. Soc. 2009, 131: 4031 -
8b
Barluenga J.Jiménez-Aquino A.Valdés C.Aznar F. Angew. Chem. Int. Ed. 2007, 46: 1529 -
9a
Fang Y.Lautens M. J. Org. Chem. 2008, 73: 538 -
9b
Nagamochi M.Fang Y.Lautens M. Org. Lett. 2007, 9: 2955 -
9c
Fayol A.Fang Y.Lautens M. Org. Lett. 2006, 8: 4203 -
9d
Fang Y.Lautens M. Org. Lett. 2005, 7: 3549 -
10a
Fletcher AJ.Bax MN.Willis MC. Chem. Commun. 2007, 4764 -
10b
Willis MC.Brace GN.Findlay TJK.Holmes IP. Adv. Synth. Catal. 2006, 348: 851 -
10c
Willis MC.Brace GN.Holmes IP. Angew. Chem. Int. Ed. 2005, 44: 403 -
11a
Multicomponent Reactions
Zhu J.Bienayme H. Wiley-VCH; Weinheim / Germany: 2005. -
11b
Jacobi von Wangelin A.Neumann H.Gordes D.Klaus S.Strubing D.Beller M. Chem. Eur. J. 2003, 9: 4286 -
11c
Zhu J. Eur. J. Org. Chem. 2003, 1133 -
11d
Jiang B.Rajale T.Wever W.Tu S.-J.Li G. Chem. Asian J. 2010, 5: 2318 -
12a
Li C.-L.Zhang X.-G.Tang R.-Y.Zhong P.Li J.-H. J. Org. Chem. 2010, 75: 7037 -
12b
Ye S.Yang X.Wu J. Chem. Commun. 2010, 46: 2950 -
12c
Jahnke E.Tykwinski RR. Chem. Commun. 2010, 46: 3235 -
12d
Bryan CS.Braunger JA.Lautens M. Angew. Chem. Int. Ed. 2009, 48: 7064 -
12e
Vieira TO.Meaney LA.Shi Y.-L.Alper H. Org. Lett. 2008, 10: 4899 -
12f
Sun C.Xu B. J. Org. Chem. 2008, 73: 7361
References and Notes
Typical Procedure for the preparation of α-alkynyl-indole 4a: Under the protection of nitrogen, Pd(OAc)2 (5 mol%) and Xantphos (10 mol%) were added to NMP (2 mL). The reaction mixture was stirred at r.t. for 15 min, then o-bromo-2-(2,2-dibromovinyl)benzene (0.4 mmol), phenylacetylene (0.4 mmol), and aniline (0.3 mmol) were added and the reaction mixture was stirred at 120 ˚C for 5 h. The reaction mixture was quenched with water and extracted with Et2O. The organic extract was washed with brine and dried over MgSO4. The solvent was then evaporated in vacuo and the residue was purified by using a SiO2 column (petroleum ether-ethyl acetate, 100:1) to afford 1-phenyl-2-(phenylethynyl)-1H-indole (4a) as a colorless solid (80%, 70 mg). ¹H NMR (400 MHz, CDCl3): δ = 6.99 (s, 1 H), 7.12-7.16 (m, 1 H), 7.17-7.22 (m, 4 H), 7.27-7.30 (m, 3 H), 7.38 (t, J = 8.0 Hz, 1 H), 7.46-7.54 (m, 4 H), 7.62 (d, J = 7.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl3): δ = 81.78, 95.25, 109.35, 110.48, 120.89, 120.95, 121.88, 122.64, 123.63, 127.25, 127.49, 127.56, 128.25, 128.30, 128.95, 131.04, 137.47, 137.56; HRMS (ESI): m/z calcd for C22H16N+: 294.1277; found: 294.1274