RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259706
Total Synthesis of Amphidinolide T3 Using Ring-Closing Metathesis and Asymmetric Dihydroxylation Strategy
Publikationsverlauf
Publikationsdatum:
08. März 2011 (online)

Abstract
Total synthesis of amphidinolide T3, a 19-membered ring marine macrolide, has been accomplished using a ring-closing metathesis (RCM) and asymmetric dihydroxylation (AD) strategy. A cycloalkene having the C12=C13 double bond was assembled via RCM in 80% yield and in E/Z ratio of 76:24. The (12E)-isomer underwent AD using 1 mol% K2OsO2(OH)4 and 4 mol% (DHQD)2AQN as the chiral catalyst at 0 ˚C for 15 hours, furnishing the desired (12R,13R)-diol and its (12S,13S)-diastereomer in 59% and 25% yields, respectively. Selective monosilylation of (12R,13R)-diol followed by DMP oxidation and desilylation afforded amphidinolide T3 in 3.4% overall yield via a 15-step sequence.
Key words
amphidinolide T3 - dihydroxylation - macrocycles - metathesis - total synthesis
- Supporting Information for this article is available online:
- Supporting Information
- For reviews, see:
-
1a
Kobayashi J.Tsuda M. Nat. Prod. Rep. 2004, 21: 77 -
1b
Kobayashi J.Kubota T. J. Nat. Prod. 2007, 70: 451 -
1c
Kobayashi J. J. Antibiot. 2008, 61: 271 -
2a
Tsuda M.Endo T.Kobayashi J. J. Org. Chem. 2000, 65: 1349 -
2b
Kobayashi J.Kubota T.Endo T.Tsuda M. J. Org. Chem. 2001, 66: 134 -
2c
Kubota T.Endo T.Tsuda M.Shiro M.Kobayashi J. Tetrahedron 2001, 57: 6175 - For total synthesis of amphidinolide T1, see:
-
3a
Ghosh AK.Liu C. J. Am. Chem. Soc. 2003, 125: 2374 -
3b
Aïssa C.Riveiros R.Ragot J.Fürstner A. J. Am. Chem. Soc. 2003, 125: 15512 -
3c
Colby EA.O’Brien KC.Jamison TF. J. Am., Chem. Soc. 2004, 126: 998 -
3d
Colby EA.O’Brien KC.Jamison TF. J. Am. Chem. Soc. 2005, 127: 4297 -
3e
Yadav JS.Reddy CS. Org. Lett. 2009, 11: 1705 - 4 For total synthesis of amphidinolide
T2, see:
Li H.Wu J.Luo J.Dai W.-M. Chem. Eur. J. 2010, 16: 11530 - For total synthesis of amphidinolide T3, see:
-
5a
Deng L.-S.Huang X.-P.Zhao G. J. Org. Chem. 2006, 71: 4625 -
5b
Ref. 3b.
- For total synthesis of amphidinolide T4, see:
-
6a
Fürstner A.Aïssa C.Riveiros R.Ragot J. Angew. Chem. Int. Ed. 2002, 41: 4763 -
6b
Refs. 3b and 3d.
- For synthesis of fragments, see:
-
7a
O’Brien KC.Colby EA.Jamison TF. Tetrahedron 2005, 61: 6243 -
7b
Abbineni C.Sasmal PK.Mukkanti K.Iqbal J. Tetrahedron Lett. 2007, 48: 4259 -
7c
Luo J.Li H.Wu J.Xing X.Dai W.-M. Tetrahedron 2009, 65: 6828 -
7d
Sasmal PK.Abbineni C.Iqbal J.Mukkanti K. Tetrahedron 2010, 66: 5000 - For selective reviews on RCM, see:
-
8a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
8b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
8c
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
8d
Schrock RR.Hoveyda AH. Angew. Chem. Int. Ed. 2003, 42: 4592 -
8e
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
8f
Grubbs RH. Tetrahedron 2004, 60: 7117 -
8g
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
8h
Gradillas A.Pérez-Castells J. Angew. Chem. Int. Ed. 2006, 45: 6086 -
8i
Schrodi Y.Pederson RL. Aldrichimica Acta 2007, 40: 45 -
8j
Hoveyda AH.Zhugralin AR. Nature (London) 2007, 450: 243 -
8k Also see:
Handbook of Metathesis
Vol.
1:
Grubbs RH. Wiley-VCH; Weinheim: 2003. -
8l
Handbook
of Metathesis
Vol. 2:
Grubbs RH. Wiley-VCH; Weinheim: 2003. -
8m
Handbook
of Metathesis
Vol. 3:
Grubbs RH. Wiley-VCH; Weinheim: 2003. - For recent reviews on AD, see:
-
9a
Zaitsev AB.Adolfsson H. Synthesis 2006, 1725 -
9b
Français A.Bedel O.Haudrechy A. Tetrahedron 2008, 64: 2495 - For total synthesis of amphidinolides X and Y, see:
-
10a
Chen Y.Jin J.Wu J.Dai W.-M. Synlett 2006, 1177 -
10b
Jin J.Chen Y.Wu J.Dai W.-M. Org. Lett. 2007, 9: 2585 -
10c
Dai W.-M.Chen Y.Jin J.Wu J.Lou J.He Q. Synlett 2008, 1737 -
11a
Sun L.Feng G.Guan Y.Liu Y.Wu J.Dai W.-M. Synlett 2009, 2361 -
11b
Liu Y.Wang J.Li H.Wu J.Feng G.Dai W.-M. Synlett 2010, 2184 - For examples of RCM-AD in large ring systems, see:
-
12a
Nattrass GL.Díez E.McLachlan MM.Dixon DJ.Ley SV. Angew. Chem. Int. Ed. 2005, 44: 580 -
12b
Jasper C.Adibekian A.Busch T.Quitschalle M.Wittenberg R.Kirschning A. Chem. Eur. J. 2006, 12: 8719 -
13a
Genêt JP.Ratovelomanana-Vidal V.Caño de Anderade MC.Pfister X.Guerreiro P.Lenoir JY. Tetrahedron Lett. 1995, 36: 4801 -
13b
Kitamura M.Tokunaga M.Ohkuma T.Noyori R. Org. Synth. 1993, 71: 1 - 14
Matsubara S.Sugihara M.Utimoto K. Synlett 1998, 313 - 16
Norrby P.Rasmussen T.Haller J.Strassner T.Houk KN. J. Am. Chem. Soc. 1999, 121: 10186
References and Notes
Characterization Data for Alcohol 6: colorless oil; [α]D ²0 -0.27 (c = 2.25, CHCl3); R f 0.27 (5% EtOAc in PE). IR (film): 3358 (br), 3076, 2959, 2928, 1642, 1456, 1020 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 5.69 (ddd, J = 17.2, 10.4, 7.2 Hz, 1 H), 4.95 (d, J = 17.2 Hz, 1 H), 4.92 (d, J = 10.8 Hz, 1 H), 4.88 (s, 1 H), 4.87 (s, 1 H), 3.71 (br s, 1 H), 2.30-2.40 (m, 1 H), 2.21 (dd, J = 14.0, 3.6 Hz, 1 H), 2.00-2.06 (m, 3 H), 1.34-1.52 (m, 4 H), 1.00 (d, J = 6.4 Hz, 3 H), 0.93 (t, J = 7.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 144.8, 143.9, 113.9, 112.8, 68.5, 44.3, 43.3, 39.2, 35.7, 20.1, 18.9, 14.1.
17
Characterization
Data for Amphidinolide T3 (3): colorless oil. ¹H
NMR data are identical to those of
natural amphidinolide
T3 (see Figure S1 in Supporting Information). HRMS (+ESI): m/z [M + Na+] calcd
for C25H42O5Na: 445.2930; found:
445.2916.