Synlett 2011(9): 1308-1312  
DOI: 10.1055/s-0030-1260544
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of (E)-Alkenyl Sulfones from Alkenes or Alkynes via Copper-Catalyzed Oxidation of Sodium Sulfinates

Nobukazu Taniguchi*
Department of Chemistry, Fukushima Medical University, Fukushima 960-1295, Japan
Fax: +81(24)5471369; e-Mail: taniguti@fmu.ac.jp;
Further Information

Publication History

Received 27 January 2011
Publication Date:
20 April 2011 (online)

Abstract

Alkenyl sulfones can be stereoselectively synthesized from alkenes or alkynes using sodium sulfinates. The reaction can be performed by a copper-catalyzed oxidation of sodium sulfinates in air. The reaction of alkenes gives (E)-alkenyl sulfones via anti addition of sulfonyl cation and elimination process. Furthermore, the employment of alkynes produces (E)-β-haloalkenyl sulfones in the presence of potassium halides.

    References and Notes

  • Selected reviews:
  • 1a Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 1b Kondo T. Mitsudo T. Chem. Rev.  2000,  100:  3205 
  • 1c Comprehensive Organic Synthesis   Vol. 4:  Trost BM. Fleming I. Pergamon Press; New York: 1991. 
  • 1d Krief A. In Comprehensive Organometallic Chemistry II   Vol. 11:  Abel EW. Stone FGA. Wilkinson G. Pergamon Press; New York: 1995.  Chap. 13.
  • 1e Metal-Catalyzed Cross-Coupling Reactions   Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 2a Metzner P. Thuillier A. Sulfur Reagents in Organic Synthesis   Katritzky AR. Meth-Cohn O. Rees CW. Academic Press; San Diego: 1994. 
  • 2b Comprehensive Organic Synthesis   Vol. 6:  Trost BM. Fleming I. Pergamon Press; New York: 1991. 
  • 3a Mauleón P. Alonso I. Rivero MR. Carretero JC.
    J. Org. Chem.  2007,  72:  9924 
  • 3b Enders D. Müller SF. Raabe G. Runsink J. Eur. J. Org. Chem.  2000,  879 
  • 4a Guan Z.-H. Zuo W. Zhoo L.-B. Ren Z.-H. Liang Y.-M. Synthesis  2007,  1465 
  • 4b Kamigata N. Sawada H. Kobayashi M. J. Org. Chem.  1983,  48:  3793 
  • 4c Gancarz RA. Kice JL. J. Org. Chem.  1981,  46:  4899 
  • 4d Hoogenboom BE. El-Faghi MS. Fink SC. Ihrig PI. Langsjoen AN. Linn CJ. Maehling KL. J. Org. Chem.  1975,  40:  880 
  • 4e Posner GH. Brunelle DJ.
    J. Org. Chem.  1972,  37:  3547 
  • 5a Beaulieu C. Guay D. Wang Z. Evans DA. Tetrahedron Lett.  2004,  45:  3233 
  • 5b Baskin JM. Wang Z. Org. Lett.  2002,  4:  4423 
  • 5c Suzuki H. Abe H. Tetrahedron Lett.  1995,  36:  6239 
  • 6a Perrlmutter P. Conjugate Addition Reactions in Organic Synthesis   Baldwin JL. Magnus FPD. Pergamon Press; Oxford: 1992. 
  • 6b Ochiai M. Kitagawa Y. Toyonari M. Uemura K. Oshima K. Shiro M. J. Org. Chem.  1997,  62:  8001 
  • 7a Battace A. Zair T. Doucet H. Santelli M. Synthesis  2006,  3495 
  • 7b Cacchi S. Fabrizi G. Goggiamani A. Parisi LM. Bernini R. J. Org. Chem.  2004,  69:  5608 
  • 7c Bian M. Xu F. Ma C. Synthesis  2007,  2951 
  • 8a Nair V. Augustine A. Suja TD. Synthesis  2002,  2259 
  • 8b Mochizuki T. Hayakawa S. Narasaka K. Bull. Chem. Soc. Jpn.  1996,  69:  2317 
  • 9a Amiel Y. J. Org. Chem.  1971,  36:  3697 
  • 9b Truce WE. Larry CT. Christensen LW. Bavry RH. J. Org. Chem.  1970,  35:  4217 
  • 10a Taniguchi N. J. Org. Chem.  2006,  71:  7874 
  • 10b Taniguchi N. J. Org. Chem.  2007,  72:  1241 
  • 10c Taniguchi N. Eur. J. Org. Chem.  2010,  2670 
  • 12 The stereochemistry of these compounds was determined by the comparison with references or authentic samples. Compounds 7cb, 7db, (Z)-3hb, and (Z)-3ib were prepared by oxidation of the corresponding alkenyl sulfides using MCPBA. For the preparation of alkenyl sulfides, see: Taniguchi N. Tetrahedron  2009,  65:  2782 ; see ref. 15a
  • 15a Amiel Y. J. Org. Chem.  1974,  39:  1974 
  • 15b Amiel Y. J. Org. Chem.  1970,  36:  3691 
11

Typical Procedure of Alkenyl Sulfones Using Alkenes
To a mixture of CuI (4.6 mg, 0.024 mmol), bpy (3.7 mg, 0.024 mmol), PhSO2Na (2a, 59.4 mg, 0.33 mmol), and KI (24.9 mg, 0.15 mmol) in DMSO (0.15 mL) and AcOH (0.15 mL) was added styrene 1a (31.2 mg, 0.3 mmol), and the mixture was stirred at 100 ˚C for 18 h in air. After the residue was dissolved in Et2O, the solution was washed with sat. NaHCO3, H2O, and sat. NaCl and dried over anhyd MgSO4. Chromatography on silica gel (30% Et2O-hexane) gave phenyl (E)-2-phenylethenyl sulfone (3aa, 68.7 mg, 94%). ¹H NMR (270 MHz, CDCl3): δ = 7.96-7.93 (m, 2 H), 7.68 (d, J = 15.5 Hz, 1 H), 7.58-7.30 (m, 8 H), 6.87 (d, J = 15.5 Hz, 1 H). ¹³C NMR (67.5 MHz, CDCl3): δ = 142.4, 140.6, 133.3, 132.2, 131.1, 129.3, 128.9, 128.5, 127.6, 127.2. IR (CHCl3): 3061, 3025, 1613, 1447, 1306 cm. Anal. Calcd for C14H12O2S: C, 68.83; H, 4.95. Found: C, 68.75; H, 5.13.

13

Typical Procedure of β-Haloalkenyl Sulfones Using Alkynes
To a mixture of CuI (4.6 mg, 0.024 mmol), bpy (3.7 mg, 0.024 mmol), PhSO2Na (2a, 59.4 mg, 0.33 mmol), and KBr (39.3 mg, 0.33 mmol) in AcOH (0.3 mL) was added phenylacetylene 1a (30.6 mg, 0.3 mmol), and the mixture was stirred at 100 ˚C for 18 h in air. After the residue was dissolved in Et2O, the solution was washed with sat. NaHCO3, H2O, and sat. NaCl and dried over anhyd MgSO4. Chromatography on silica gel (40% Et2O-hexane) gave (E)-1-phenylsulfonyl-2-bromo-2-phenylethene (7aa, 60.7 mg, 63%). ¹H NMR (270 MHz, CDCl3): δ = 7.61-7.51 (m, 3 H), 7.42-7.30 (m, 7 H), 7.17 (s, 1 H). ¹³C NMR (67.5 MHz, CDCl3): δ = 140.2, 138.7, 135.9, 134.1, 133.5, 130.4, 128.9, 128.5, 127.9, 127.7. IR (CHCl3): 3056, 1611, 1590, 1446, 1324 cm. Anal. Calcd for C14H11O2SBr: C, 52.03; H, 3.43. Found: C, 51.42; H, 3.17.

14

In the presence of the proton, the disproportionation of copper ion easily proceeds, see ref. 12.