Subscribe to RSS
DOI: 10.1055/s-0030-1260544
Stereoselective Synthesis of (E)-Alkenyl Sulfones from Alkenes or Alkynes via Copper-Catalyzed Oxidation of Sodium Sulfinates
Publication History
Publication Date:
20 April 2011 (online)
Abstract
Alkenyl sulfones can be stereoselectively synthesized from alkenes or alkynes using sodium sulfinates. The reaction can be performed by a copper-catalyzed oxidation of sodium sulfinates in air. The reaction of alkenes gives (E)-alkenyl sulfones via anti addition of sulfonyl cation and elimination process. Furthermore, the employment of alkynes produces (E)-β-haloalkenyl sulfones in the presence of potassium halides.
Key words
alkenyl sulfone - copper catalyst - sodium sulfinate - alkene - alkyne
- Supporting Information for this article is available online:
- Supporting Information
- Selected reviews:
-
1a
Ley SV.Thomas AW. Angew. Chem. Int. Ed. 2003, 42: 5400 -
1b
Kondo T.Mitsudo T. Chem. Rev. 2000, 100: 3205 -
1c
Comprehensive
Organic Synthesis
Vol. 4:
Trost BM.Fleming I. Pergamon Press; New York: 1991. -
1d
Krief A. In Comprehensive Organometallic Chemistry II Vol. 11:Abel EW.Stone FGA.Wilkinson G. Pergamon Press; New York: 1995. Chap. 13. -
1e
Metal-Catalyzed
Cross-Coupling Reactions
Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. -
2a
Metzner P.Thuillier A. Sulfur Reagents in Organic SynthesisKatritzky AR.Meth-Cohn O.Rees CW. Academic Press; San Diego: 1994. -
2b
Comprehensive
Organic Synthesis
Vol. 6:
Trost BM.Fleming I. Pergamon Press; New York: 1991. -
3a
Mauleón P.Alonso I.Rivero MR.Carretero JC.
J. Org. Chem. 2007, 72: 9924 -
3b
Enders D.Müller SF.Raabe G.Runsink J. Eur. J. Org. Chem. 2000, 879 -
4a
Guan Z.-H.Zuo W.Zhoo L.-B.Ren Z.-H.Liang Y.-M. Synthesis 2007, 1465 -
4b
Kamigata N.Sawada H.Kobayashi M. J. Org. Chem. 1983, 48: 3793 -
4c
Gancarz RA.Kice JL. J. Org. Chem. 1981, 46: 4899 -
4d
Hoogenboom BE.El-Faghi MS.Fink SC.Ihrig PI.Langsjoen AN.Linn CJ.Maehling KL. J. Org. Chem. 1975, 40: 880 -
4e
Posner GH.Brunelle DJ.
J. Org. Chem. 1972, 37: 3547 -
5a
Beaulieu C.Guay D.Wang Z.Evans DA. Tetrahedron Lett. 2004, 45: 3233 -
5b
Baskin JM.Wang Z. Org. Lett. 2002, 4: 4423 -
5c
Suzuki H.Abe H. Tetrahedron Lett. 1995, 36: 6239 -
6a
Perrlmutter P. Conjugate Addition Reactions in Organic SynthesisBaldwin JL.Magnus FPD. Pergamon Press; Oxford: 1992. -
6b
Ochiai M.Kitagawa Y.Toyonari M.Uemura K.Oshima K.Shiro M. J. Org. Chem. 1997, 62: 8001 -
7a
Battace A.Zair T.Doucet H.Santelli M. Synthesis 2006, 3495 -
7b
Cacchi S.Fabrizi G.Goggiamani A.Parisi LM.Bernini R. J. Org. Chem. 2004, 69: 5608 -
7c
Bian M.Xu F.Ma C. Synthesis 2007, 2951 -
8a
Nair V.Augustine A.Suja TD. Synthesis 2002, 2259 -
8b
Mochizuki T.Hayakawa S.Narasaka K. Bull. Chem. Soc. Jpn. 1996, 69: 2317 -
9a
Amiel Y. J. Org. Chem. 1971, 36: 3697 -
9b
Truce WE.Larry CT.Christensen LW.Bavry RH. J. Org. Chem. 1970, 35: 4217 -
10a
Taniguchi N. J. Org. Chem. 2006, 71: 7874 -
10b
Taniguchi N. J. Org. Chem. 2007, 72: 1241 -
10c
Taniguchi N. Eur. J. Org. Chem. 2010, 2670 - 12 The stereochemistry of these compounds
was determined by the comparison with references or authentic samples. Compounds 7cb, 7db, (Z)-3hb, and
(Z)-3ib were
prepared by oxidation of the corresponding alkenyl sulfides using MCPBA.
For the preparation of alkenyl sulfides, see:
Taniguchi N. Tetrahedron 2009, 65: 2782 ; see ref. 15a -
15a
Amiel Y. J. Org. Chem. 1974, 39: 1974 -
15b
Amiel Y. J. Org. Chem. 1970, 36: 3691
References and Notes
Typical Procedure
of Alkenyl Sulfones Using Alkenes
To a mixture of
CuI (4.6 mg, 0.024 mmol), bpy (3.7 mg, 0.024 mmol), PhSO2Na
(2a, 59.4 mg, 0.33 mmol), and KI (24.9
mg, 0.15 mmol) in DMSO (0.15 mL) and AcOH (0.15 mL) was added styrene 1a (31.2 mg, 0.3 mmol), and the mixture
was stirred at 100 ˚C for 18 h in air. After the residue was
dissolved in Et2O, the solution was washed with sat. NaHCO3,
H2O, and sat. NaCl and dried over anhyd MgSO4. Chromatography
on silica gel (30% Et2O-hexane) gave phenyl
(E)-2-phenylethenyl sulfone (3aa, 68.7 mg, 94%).
¹H
NMR (270 MHz, CDCl3): δ = 7.96-7.93
(m, 2 H), 7.68 (d, J = 15.5
Hz, 1 H), 7.58-7.30 (m, 8 H), 6.87 (d, J = 15.5 Hz,
1 H). ¹³C NMR (67.5 MHz, CDCl3): δ = 142.4,
140.6, 133.3, 132.2, 131.1, 129.3, 128.9, 128.5, 127.6, 127.2. IR (CHCl3):
3061, 3025, 1613, 1447, 1306 cm-¹.
Anal. Calcd for C14H12O2S: C, 68.83;
H, 4.95. Found: C, 68.75; H, 5.13.
Typical Procedure
of β-Haloalkenyl Sulfones Using Alkynes
To
a mixture of CuI (4.6 mg, 0.024 mmol), bpy (3.7 mg, 0.024 mmol),
PhSO2Na (2a, 59.4 mg, 0.33 mmol),
and KBr (39.3 mg, 0.33 mmol) in AcOH (0.3 mL) was added phenylacetylene 1a (30.6 mg, 0.3 mmol), and the mixture was
stirred at 100 ˚C for 18 h in air. After the residue was dissolved
in Et2O, the solution was washed with sat. NaHCO3,
H2O, and sat. NaCl and dried over anhyd MgSO4. Chromatography
on silica gel (40% Et2O-hexane) gave
(E)-1-phenylsulfonyl-2-bromo-2-phenylethene
(7aa, 60.7 mg, 63%). ¹H
NMR (270 MHz, CDCl3): δ = 7.61-7.51
(m, 3 H), 7.42-7.30 (m, 7 H), 7.17 (s, 1 H). ¹³C
NMR (67.5 MHz, CDCl3): δ = 140.2, 138.7,
135.9, 134.1, 133.5, 130.4, 128.9, 128.5, 127.9, 127.7. IR (CHCl3):
3056, 1611, 1590, 1446, 1324 cm-¹.
Anal. Calcd for C14H11O2SBr: C,
52.03; H, 3.43. Found: C, 51.42; H, 3.17.
In the presence of the proton, the disproportionation of copper ion easily proceeds, see ref. 12.