Subscribe to RSS
DOI: 10.1055/s-0031-1289859
Ammonium Phosphorodithioate: A Mild, Easily Handled, Efficient, and Air-Stable Reagent for the Conversion of Amides into Thioamides
Publication History
Publication Date:
09 November 2011 (online)
Abstract
A simple, efficient, and new method has been developed for the synthesis of thioamides from amides. As described below, the reaction of a variety of aromatic and aliphatic amides in the presence of ammonium phosphorodithioate as an efficient reagent proceeded effectively to afford the corresponding thioamides in high yields. This method is easy, rapid, and high-yielding for the synthesis of thioamides from amides using an easily handled reagent.
Key words
thioamides - amides - phosphorodithioates - thionation
-
1a
Oare DA.Sanner MA.Heathcock CH. J. Org. Chem. 1990, 55: 132 -
1b
Heathcock CH.Davidson SK.Mills SG.Sanner MA. J. Org. Chem. 1992, 57: 2531 -
1c
Magnus P.Mendoza JS.Stamford A.Ladlow M.Willis P. J. Am. Chem. Chem. Soc. 1992, 114: 10232 -
1d
Kim G.Chu-Moyer MY.Danshefsky SJ.Schulte GK. J. Am. Chem. Soc. 1993, 115: 30 -
1e
Takahata H.Banba Y.Mozumi M.Yamazaki T. Heterocycles 1986, 24: 947 -
1f
Takahata H.Yamazaki T. Heterocycles 1988, 27: 1953 -
1g
Hurd RN.Delmater GT. Chem. Rev. 1961, 61: 45 -
1h
Roth HJ.Kleemann A. Drug Synthesis, In Pharmaceutical Chemistry Vol. 1: Wiley; New York: 1988. -
1i
Hoeg-Jensen T. Phosphorus, Sulfur Silicon Relat. Elem. 1996, 108: 1 - 2
Sherman DB.Spatola AF.Wire WS.Burks TF.Nguyen TM.-D.Schiller PW. Biochem. Biophys. Res. Commun. 1982, 162: 1126 - 3
Albert A.Knecht H.Andersen E.Hungerford V.Schreier MH.Papageorgiou C. Bioorg. Med. Chem. 1988, 8: 2203 - 4
Jeschke P.Harder A.Etzel W.dau W.Thielking G.Bonse G.Linuma K. Pest Manag. Sci. 2001, 57: 1000 - 5
Cynamon MH.Gimi R.Gyenes F.Sharpe CA.Bergmann KE.Han HJ.Gregor LB.Rapolu R.Luciano G.Welch T. J. Med. Chem. 1995, 38: 3902 - 6
Renau TE.Ludwig MS.Drach JC.Townsend LB. Bioorg. Med. Chem. Lett. 1992, 2: 1755 - 7
Mehanna AS.Belani JD.Kelley CJ.Pallansc LA. Med. Chem. 2007, 3: 513 - 8
Suzyki Y.Yazaki R.Kumagai N.Shibasaki M. Angew. Chem. Int. Ed. 2009, 48: 5026 -
9a
Kindler K. Justus Liebigs Ann. Chem. 1923, 431: 187 -
9b
Zbruyev OI.Stiasni N.Kapper CO. J. Comb. Chem. 2003, 5: 145 -
9c
Wang C.-H.Hwang F.-Y.Horng J.-M.Chen C.-T. Heterocycles 1979, 12: 1191 -
9d
Albert A. Ber. Dtsch. Chem. Ges. 1915, 48: 470 -
9e
Taylor EC.Zoltewicz JA. J. Am. Chem. Soc. 1960, 82: 2656 -
9f
Liboska R.Zyka D.Bobek M. Synthesis 2002, 1649 -
9g
Benner SA. Tetrahedron Lett. 1981, 22: 1851 -
9h
Benner SA. Tetrahedron Lett. 1981, 22: 1855 -
9i
Shiao MJ.Lai LL.Ku WS.Lin PY.Hwu JR. J. Org. Chem. 1993, 58: 4772 -
9j
Brillon D. Synth. Commun. 1992, 22: 1397 - 10
Okamoto K.Yamamoto T.Kanbara T. Synlett 2007, 2687 - For selected articles, see:
-
11a
Ozturk T.Ertas E.Mert O. Chem. Rev. 2007, 107: 5210 -
11b
Varma RS.Kumar D. Org. Lett. 1999, 1: 697 -
11c
Curphey TJ. J. Org. Chem. 2002, 67: 6461 - 12
Charette AB.Gernon M. J. Org. Chem. 2003, 68: 5792 - 13
Pathak U.Pandey LK.Tank R. J. Org. Chem. 2008, 78: 2890 - 14
Borthakur N.Goswami A. Tetrahedron Lett. 1995, 36: 6745 - 15
Cho D.Ahn J.De Castro KA.Ahn H.Rhee H. Tetrahedron 2010, 66: 5583 -
16a
Kaboudin B.Norouzi H. Synthesis 2004, 2035 -
16b
Kaboudin B.Elhamifar D. Synthesis 2006, 224 -
16c
Kaboudin B.Elhamifar D.Farjadian F. Org. Prep. Proced. Int. 2006, 38: 412 - 18
Habibi M.Habibi MH.Tangestaninejad S.Fallah-Shojaie A.Mohammadpoor-Baltork I.Tayyari SF.Emtiazi G.Hamidimotlagh R. J. Coord. Chem. 2005, 58: 955 - 19
Alliger G.Smith GEP.Carr EL.Stevens HP.
J. Org. Chem. 1949, 14: 962 - 20
Rauf MK.Bolte M.Badshah A. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, 65: 01265 - 21
Hori T.Otani Y.Kawahata M.Yamaguchi K.Ohwada T. J. Org. Chem. 2008, 73: 9102 - 22
Scheibye S.Pedersen BS.Lawesson S.-O. Bull. Soc. Chim. Belg. 1978, 78: 229 - 23
Bagley MC.Chapaneri K.Glover C.Merritt EA. Synlett 2004, 2615
References and Notes
The amide (5 mmol) was added to a
mixture of O,O-diethyl ammonium
phosphorodithioate salt (10 mmol, 2.03 g)¹6a and toluene
(5 mL), and the reaction mixture was stirred for 4-10 h
at reflux. After stirring for a known period (Table
[²]
), the mixture was evaporated
under reduced pressure. The resulting mixture was subjected to column
chromatography on silica gel with EtOAc-n-hexane
(1:9), and evaporation of the solvent under reduced pressure gave
pure products in 70-91% yields. All products gave
satisfactory spectral data in accord with the assigned structures
and literature reports.9-¹6,¹8-²²
Thiobenzamide (2a)
¹H
NMR (400 MHz, CDCl3): δ = 7.29 (br,
1 H, NH2), 7.43 (t, 2 H, J = 8.0
Hz), 7.54 (t, 1 H, J = 8.0
Hz), 7.89 (d, 2 H, J = 8.0
Hz), 7.90 (br, 1 H, NH2). ¹³C
NMR (100.65 MHz, CDCl3): δ = 126.9,
128.5, 132.1, 139.2, 202.2.
2-Chlorothiobenzamide
(2b)
¹H NMR (400 MHz, CDCl3): δ = 7.35
(br, 1 H, NH2), 7.28-7.48 (m, 3 H), 7.62 (d,
1 H, J = 8.0
Hz), 8.45 (br, 1 H, NH2). ¹³C
NMR (100.65 MHz, CDCl3): δ = 127.1,
128.2, 130.1, 130.2, 131.0, 140.4, 201.5.
3-Chlorothiobenzamide
(2c)
¹H NMR (400 MHz, CDCl3): δ = 7.29
(br, 1 H, NH2), 7.37 (t, 1 H, J = 8.0
Hz), 7.50 (d, 1 H, J = 8.0
Hz), 7.72 (d, 1 H, J = 8.0
Hz), 7.88 (s, 1 H), 7.92 (br, 1 H, NH2). ¹³C
NMR (100.65 MHz, CDCl3): δ = 124.8,
127.3, 131.9, 134.6, 140.8, 201.1.
N
-Phenylthiobenzamide (2d)
¹H
NMR (400 MHz, CDCl3): δ = 7.23-7.90
(m, 10 H), 9.03 (br, 1 H, NH). ¹³C
NMR (100.65 MHz, CDCl3): δ = 123.6, 126.7,
127.0, 128.7, 129.1, 131.3, 138.9, 143.3, 198.3.
N
-(2-Ethylphenyl)thiobenzamide
(2e)
¹H NMR (400 MHz, CDCl3): δ = 1.29
(t, 3 H, J = 7.6
Hz), 2.71 (q, 2 H, J = 7.6
Hz), 7.23-7.45 (m, 3 H), 7.47 (t, 2 H, J = 7.6
Hz), 7.57 (t, 2 H, J = 7.2
Hz), 7.93 (d, 2 H, J = 7.2 Hz),
8.87 (br, 1 H, NH). ¹³C NMR (100.65
MHz, CDCl3): δ = 14.4, 24.5, 126.8,
127.4, 128.5, 128.7, 129.2, 131.5, 137.0, 139.8, 142.2, 200.0.
N
-(4-Methoxyphenyl)thiobenzamide
(2f)
¹H NMR (400 MHz, CDCl3): δ = 3.88
(s, 3 H), 7.01 (d, 2 H, J = 7.2
Hz), 7.45 (t, 2 H, J = 7.6
Hz), 7.53 (t, 1 H, J = 7.2 Hz),
7.66 (d, 2 H, J = 7.2
Hz), 7.89 (d, 2 H, J = 7.2
Hz), 8.97 (br, 1 H, NH). ¹³C NMR (100.65
MHz, CDCl3): δ = 55.5, 114.2, 125.6,
126.7, 128.7, 129.2, 131.3, 131.9, 143.0, 158.2, 198.2.
N
-(4-Bromophenyl)thiobenzamide
(2g)
¹H NMR (400 MHz, CDCl3): δ = 7.40-7.65
(m, 5 H), 7.74 (d, 2 H, J = 7.2
Hz), 7.87 (d, 2 H, J = 7.2
Hz), 8.98 (br, 1 H, NH). ¹³C NMR (100.65
MHz, CDCl3): δ = 119.9, 125.1, 128.8,
129.2, 131.5, 132.2, 137.9, 198.0.
N
-Cyclohexylthiobenzamide (2h)
¹H
NMR (400 MHz, CDCl3): δ = 1.19-1.60
(m, 5 H), 1.62-1.85 (m, 3 H), 2.17-2.25 (m, 2
H), 4.48-4.61 (m, 1 H), 7.36 (t, 2 H, J = 7.6
Hz), 7.44 (t, 1 H, J = 7.2
Hz), 7.54 (br, 1 H, NH), 7.70 (d, 2 H, J = 7.2
Hz). ¹³C NMR (100.65 MHz, CDCl3): δ = 24.7,
25.5, 31.6, 55.0, 126.7, 128.4, 130.9, 142.3, 197.6.
2-Chloro-
N
-cyclohexylthiobenzamide (2i)
¹H
NMR (400 MHz, CDCl3): δ = 1.19-1.60
(m, 5 H), 1.62-1.85 (m, 3 H), 2.17-2.25 (m, 2
H), 4.48-4.62 (m, 1 H), 7.27-7.40 (m, 3 H, NH),
7.50-7.40 (m, 1 H), 7.57-7.62 (m, 1 H). ¹³C
NMR (100.65 MHz, CDCl3): δ = 24.6,
25.5, 31.3, 54.8, 127.0, 128.3, 129.9, 130.1, 130.3, 142.2, 195.5.
N,N-
Dimethylthiobenzamide
(2j)
¹H NMR (400 MHz, CDCl3): δ = 3.03
(s, 3 H), 3.47 (s, 3 H), 7.15-7.29 (m, 5 H). ¹³C
NMR (100.65 MHz, CDCl3): δ = 43.2,
44.2, 125.7, 128.3, 128.5, 143.3, 200.7.
4-Methyl-
N
,
N-
dimethylthiobenzamide
(2k)
¹H NMR (400 MHz, CDCl3): δ = 2.34
(s, 3 H), 3.16 (s, 3 H), 3.57 (s, 3 H), 7.13 (d, 2 H, J = 8.0 Hz),
7.20 (d, 2 H, J = 8.0 Hz). ¹³C
NMR (100.65 MHz, CDCl3): δ = 21.3,
43.4, 44.3, 125.9, 128.9, 138.7, 140.6, 201.4.
4-Chloro-
N
,
N-
dimethylthiobenzamide (2l)
CAS
No. 15563-46. ¹H NMR (400 MHz, CDCl3): δ = 3.19 (s,
3 H), 3.60 (s, 3 H), 7.26 (d, 2 H, J = 8.4
Hz), 7.34 (d, 2 H, J = 8.4
Hz). ¹³C NMR (100.65 MHz, CDCl3): δ = 43.3,
44.2, 127.3, 128.6, 134.6, 141.6, 199.8.
3-Methyl-
N
,
N-
dimethylthiobenzamide
(2m)
¹H NMR (400 MHz, CDCl3): δ = 2.34
(s, 3 H), 3.14 (s, 3 H), 3.57 (s, 3 H), 7.05 (d, 1 H, J = 7.6 Hz),
7.12 (d, 2 H, J = 6.0 Hz),
7.22 (d, 1 H, J = 8.0
Hz). ¹³C NMR (100.65 MHz, CDCl3): δ = 21.4,
43.2, 44.2, 122.6, 126.3, 128.2, 129.3, 138.1, 143.4, 201.4.
Thioacetamide (2n)
CAS No. 62-55-5. ¹H
NMR (400 MHz, CDCl3): δ = 3.34 (s, 3
H), 8.90-9.20 (br, 2 H, NH2). ¹³C
NMR (100.65 MHz, CDCl3): δ = 31.0,
206.1.