Synlett 2011(19): 2803-2806  
DOI: 10.1055/s-0031-1289868
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Total Synthesis of (-)-Isocladospolide B and Cladospolide B and C

J. S. Yadav*a,b, S. S. Mandala
a Organic Division-I, Indian Institute of Chemical Technology, CSIR, Hyderabad 500607, India
Fax: +91(40)27160387; e-Mail: yadavpub@iict.res.in;
b Bee Research Chair, College of Food and Agriculture Science, King Saudi University, Riyadh 11451, Saudi Arabia
Further Information

Publication History

Received 8 July 2011
Publication Date:
11 November 2011 (online)

Abstract

The enantioselective synthesis of bioactive butenolides isocladospolide B, cladospolide B, and cladospolide-C has been achieved from (S)-propylene oxide. Of the three stereogenic centers, the C-4/C-5 vic-diol was obtained using diastereo- and enantio­selective Brown hydroxycrotylation, while the C-11 stereocenter was created by Jacobsen hydrolytic kinetic resolution.

    References and Notes

  • 1a Fujii Y. Fukuda A. Hamasaki T. Ichimoto I. Nakajima J. Phytochemistry (Elsevier)  1995,  40:  1443 
  • 1b Hirota A. Sakai H. Isogai A. Agric. Biol. Chem.  1985,  49:  731 
  • 2a Smith CJ. Abbanat D. Bernan VS. Maiese WM. Greenstein M. Jompa J. Tahir A. Ireland CM. J. Nat. Prod.  2000,  63:  142 
  • 2b Gestner S. Cohen N. Ilan M. Yarden O. Carmeli S. J. Nat. Prod.  2005,  68:  1350 
  • For the synthesis of the revised structure of cladospolide B, see:
  • 3a Sharma GVM. Reddy JJ. Reddy KL. Tetrahedron Lett.  2006,  47:  6537 
  • For the synthesis of cladospolide B, see:
  • 3b Pandey SK. Kumar P. Tetrahedron Lett.  2005,  46:  6625 
  • 3c Austin KAB. Banwell MG. Loong DTJ. Rae AD. Willis AC. Org. Biomol. Chem.  2005,  3:  1081 
  • 3d Sharma GVM. Reddy JJ. Reddy KL. Tetrahedron Lett.  2006,  47:  6531 
  • 3e Xing Y. O’Doherty GA. Org. Lett.  2009,  11:  1107 
  • 3f Prasad KR. Gandi VR. Tetrahedron: Asymmetry  2010,  21:  275 
  • For the synthesis of cladospolide C:
  • 4a Banwell MG. Loong DTJ. Willis AC. Aust. J. Chem.  2005,  58:  511 
  • 4b Chou C.-Y. Hou D.-R. J. Org. Chem.  2006,  71:  9887 
  • 4c Sharma GVM. Reddy KL. Reddy JJ. Tetrahedron Lett.  2006,  47:  6537 
  • 4d Reddy ChR. Rao NN. Tetrahedron Lett.  2009,  50:  2478 
  • For earlier syntheses of cladospolide A, see:
  • 5a Maemoto S. Mori K. Chem. Lett.  1987,  109 
  • 5b Mori K. Maemoto S. Liebigs Ann. Chem.  1987,  863 
  • 5c Ichimoto I. Sato M. Kirihata M. Ueda H. Chem. Express  1987,  2:  495 
  • 5d Solladié G. Antonio A. Pure Appl. Chem.  1994,  66:  2159 
  • 5e Solladié G. Almario A. Tetrahedron: Asymmetry  1995,  6:  559 
  • 5f Banwell MG. Jolliffe KA. Loong DTJ. McRae KJ. Vounatsos F. J. Chem. Soc., Perkin Trans. 1  2002,  22 
  • 5g Banwell MG. Loong DTJ. Org. Biomol. Chem.  2004,  2:  2050 
  • 5h Austin KAB. Banwell MG. Loong DTJ. Rae AD. Willis AC. Org. Biomol. Chem.  2005,  3:  1081 
  • 5i Rajesh K. Suresh V. Selvam JJP. Rao CB. Venkateswarlu Y. Synthesis  2010,  1381 
  • 5j Kaliappan K. Si D. Synlett  2010,  2441 
  • For the synthesis of cladospolide D, see:
  • 6a Lu K.-J. Chen C.-H. Hou D.-R. Tetrahedron  2009,  65:  225 
  • 6b Xing Y. O’Doherty GA. Org. Lett.  2009,  11:  1107 
  • 6c Xing Y. Penn JH. O’Doherty GA. Synthesis  2009,  2847 
  • For the synthesis of the revised structure of isocladospolide B, see:
  • 7a Sharma GVM. Reddy JJ. Reddy KL. Tetrahedron Lett.  2006,  47:  6537 
  • 7b Ferrié L. Reymond S. Capdevielle P. Cossy J. Synlett  2007,  2891 
  • For other syntheses of the structure of isocladospolide B, see:
  • 7c Franck X. Vaz Araujo ME. Jullian J.-C. Hocquemiller R. Figadere B. Tetrahedron Lett.  2001,  42:  2801 
  • 7d Pandey SK. Kumar P. Tetrahedron Lett.  2005,  46:  6625 
  • 7e Trost BM. Aponick A. J. Am. Chem. Soc.  2006,  128:  3931 
  • 7f Srihari P. Bhasker EV. Harshavasdhan SJ. Yadav JS. Synthesis  2006,  4041 
  • For our contributions on lactone-containing molecules, see:
  • 8a Yadav JS. Mandal SS. Reddy JSS. Srihari P. Tetrahedron  2011,  67:  4620 
  • 8b Yadav JS. Reddy JSS. Mandal SS. Srihari P. Synlett  2010,  2636 
  • 8c Srihari P. Kumaraswamy B. Rao GM. Yadav JS. Tetrahedron: Asymmetry  2010,  21:  106 
  • 8d Srihari P. Bhasker EV. Reddy AB. Yadav JS. Tetrahedron Lett.  2009,  50:  2420 
  • 8e Yadav JS. Kumar VN. Rao RS. Srihari P. Synthesis  2008,  1938 
  • 8f Srihari P. Kumar BP. Subbarayudu K. Yadav JS. Tetrahedron Lett.  2007,  48:  6977 
  • 8g Srihari P. Bhasker EV. Harshavardhan SJ. Yadav JS. Synthesis  2006,  4041 
  • 8h Yadav JS. Rao KV. Sridhar Reddy M. Prasad AR. Tetrahedron Lett.  2006,  47:  4393 
  • 8i Yadav JS. Prathap I. Padmaja TB. Tetrahedron Lett.  2006,  47:  3773 
  • 9a Schaus SE. Brandes BD. Larrow JF. Tokunaga M. Hansen KB. Gould AE. Furrow ME. Jacobsen EN. J. Am. Chem. Soc.  2002,  124:  1307 
  • 9b For earlier publications from our group using salen complexes, see: Yadav JS. Srihari P. Tetrahedron: Asymmetry  2004,  15:  81 
  • 10a Brown HC. Jadhav PK. Bhat KS. J. Am. Chem. Soc.  1988,  110:  1535 
  • 10b

    The de was determined to be >99% by reverse-phase HPLC column chromatography: Waters HRC18, 300 × 3.9 mm, 6 micron. The mobile phase used was MeCN + H2O (30:70). Flow rate: 1.0 mL/min. The ee was analyzed using Chiral Pack IA, 250 × 4.6 mm, 5 µm, λ = 254 nm, hexane-2-PrOH (80:20) as mobile phase, flow rate: 1.0 mL/min.

  • 11a Still-Gennari olefination of the aldehyde 14 derived from 7 leading to 6 was performed according to the literature procedure: Still WC. Gennari C. Tetrahedron Lett.  1983,  24:  4405 
  • 11b For a review on Wittig olefination reactions, see: Maryanoff BE. Reitz AB. Chem. Rev.  1989,  89:  863 
  • 12 Keck GE. Murry JA. J. Org. Chem.  1991,  56:  6606 
  • 13 Inanaga J. Hirata K. Saeki H. Katsuki T. Yamaguchi M. Bull. Chem. Soc. Jpn.  1979,  52:  1989 
  • 14 Shiina I. Kubota M. Ibuka R. Tetrahedron Lett.  2002,  43:  7535 
15

The ¹H NMR and ¹³C NMR spectroscopic data, specific rotation, and mp match the reported data for cladospolide B (2), cladospolide C (3), and isocladospolide B (5).
Spectroscopic Data for Representative Compounds 2 Colorless solid; mp 100-101 ˚C (lit.¹b mp 98-102 ˚C); [α]D ²9 +24.2 (c 1.5, CHCl3) {lit.¹b [α]D +26.9 (c 0.4, MeOH)}. ¹H NMR (300 MHz, CDCl3): δ = 1.27 (d, 3 H, J = 6.0 Hz, H-12), 1.34-2.08 (m, 10 H, 5 × CH2), 2.45 (br s, 2-OH), 3.88 (dtd, 1 H, J = 1.5, 4.0, 8.6 Hz, H-5), 4.97 (qdd, 1 H, J = 0.3, 6.0, 9.2 Hz, H-11), 5.11 (ddd, 1 H, J = 1.2, 4.0, 8.6 Hz, H-4), 5.85 (dd, 1 H, J = 1.1, 12.0 Hz, H-2), 6.13 (dd, 1 H, J = 8.6, 12.0 Hz, H-3). ¹³C NMR (75 MHz, CDCl3): δ = 17.3, 20.3, 20.5, 25.0, 29.6, 30.9, 67.9, 72.5, 73.1, 122.3, 145.2, 166.1. IR (neat): 3454, 3298, 2927, 2859, 1710, 1463, 1285, 1106, 1043, 823 cm. ESI-MS: m/z = 251 [M + Na]+. ESI-HRMS: m/z calcd for C12H20O4Na [M + Na]+: 251.1259; found: 251.1267.
Compound 3
Colorless solid; mp 92-93 ˚C (lit.¹b mp 90-91 ˚C); [α]D ³¹ +36.7 (c 0.3, CHCl3) {lit.¹a [α]D +59.7 (c 0.4, MeOH)}. ¹H NMR (300 MHz, CDCl3): δ = 1.31 (d, 3 H, J = 6.0 Hz, H-12), 1.23-1.28 (m, 10 H, 5 × CH2), 2.54 (br s, OH), 3.56 (t, 1 H, J = 7.7 Hz, H-5), 3.98 (dd, 1 H, J = 7.7, 9.1 Hz, H-4), 4.92-5.02 (m, 1 H, H-11), 6.05 (d, 1 H, J = 15.8 Hz, H-2), 6.81 (dd, 1 H, J = 9.4, 15.8 Hz, H-3). ¹³C NMR (75 MHz, CDCl3): δ = 20.8, 24.5, 27.2, 29.7, 32.1, 33.9, 74.4, 76.6, 77.5, 124.5, 145.3, 166.1. IR (neat): 3321, 1725, 1637, 1352, 1219, 1109, 772 cm. ESI-MS: m/z = 251 [M + Na]+. ESI-HRMS: m/z calcd for C12H20O4Na [M + Na]+: 251.1259; found: 251.1269.
Compound 5
Colorless syrup; [α]D ²9 -56.6 (c 1.0, CHCl3) {lit.²b [α]D -61.0 (c 16.6, MeOH)}. ¹H NMR (300 MHz, CDCl3): δ = 1.17 (d, 3 H, J = 6.0 Hz, H-12), 1.20-1.63 (m, 10 H, 5 × CH2), 1.82 (br s, 2-OH), 3.70-3.84 (m, 2 H, H-11, H-5), 4.98 (ddd, 1 H, J = 1.5, 2.3, 4.5 Hz, H-4), 6.18 (dd, 1 H, J = 2.3, 6.0 Hz, H-2), 7.46 (dd, 1 H, J = 1.5, 6.0 Hz, H-3). ¹³C NMR (75 MHz, CDCl3): δ = 23.9, 25.8, 25.9, 29.7, 33.5, 39.5, 68.5, 72.1, 86.6, 123.1, 154.2, 173.4. IR (neat): 3452, 3370, 2930, 2854, 1748, 1465, 1172, 831 cm. ESI-MS: m/z = 251 [M + Na]+. ESI-HRMS: m/z calcd for C12H20O4Na [M + Na]+: 251.1259; found: 251.1271.
Compound 12
[α]D ³0 +18.7 (c 1.0, CHCl3). ¹H NMR (300 MHz, CDCl3):
δ = 0.02 (s, 6 H), 0.87 (s, 9 H), 1.09 (d, 3 H, J = 6.0 Hz), 1.23-1.59 (m, 8 H), 1.74-2.16 (m, 2 H), 2.27-2.55 (m, 1 H), 3.36 (d, 3 H, J = 3.6 Hz), 3.63 (br s, OH), 3.68-3.81 (m, 1 H), 3.83-4.07 (m, 1 H), 4.54 (dd, 1 H, J = 4.2, 6.6 Hz), 4.68 (d, 3 H, J = 6.6 Hz), 5.23-5.37 (m, 2 H), 5.57-5.86 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = -4.7, -4.5, 18.1, 23.8, 25.7, 25.9, 29.7, 32.1, 34.3, 39.6, 55.5, 68.6, 73.2, 80.8, 93.8, 120.0, 133.6. IR (neat): 3436, 2927, 2857, 1641, 1460, 1031, 769 cm. ESI-MS: m/z = 383 [M + Na]+. ESI-HRMS:
m/z calcd for C19H40O4NaSi [M + Na]+: 383.2593; found: 383.2579.
Compound 15
[α]D ³¹ +23.6 (c 1.0, CHCl3). ¹H NMR (300 MHz, CDCl3):
δ = 1.19 (d, 3 H, J = 6.0 Hz), 1.42 (s, 3 H), 1.43 (s, 3 H), 1.28-1.72 (m, 10 H), 3.69-3.78 (m, 1 H), 3.83 (q, 1 H, J = 6.0 Hz,), 5.27 (dt, 1 H, J = 1.0, 9.0 Hz), 5.64 (br s, 2-OH), 5.94 (dd, 1 H, J = 1.0, 11.3 Hz), 6.23 (dd, 1 H, J = 8.3, 11.3 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 23.1, 25.0, 25.1, 27.0, 27.3, 29.3, 31.6, 38.7, 68.2, 76.0, 80.8, 109.3, 122.4, 147.4, 169.1. IR (neat): 3473, 2934, 1722, 1661, 1371, 1174, 1036, 979 cm. ESI-MS: 309 [M + Na]+. ESI-HRMS: m/z calcd for C15H26O4NaSi [M + Na]+: 309.1682; found: 309.1678.