Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(5): 791-795
DOI: 10.1055/s-0031-1290164
DOI: 10.1055/s-0031-1290164
letter
Microwave-Promoted Michael Addition of Azaheterocycles to α,β-Unsaturated Esters and Acid under Solvent-Free Conditions
Further Information
Publication History
Received: 09 November 2011
Accepted after revision: 04 January 2012
Publication Date:
09 February 2012 (online)
Abstract
Regioselective Michael addition of N-9 adenine to ethyl acrylate under microwave activation in solid-liquid solvent-free phase-transfer catalysis using TBAB as catalyst and DABCO as base was extended to tert-butyl acrylate and acrylic acid. Under these conditions and in the presence of a catalytic amount of KOH, first Michael addition of indole and indolylmaleimide to acrylates is also reported.
Key words
microwave irradiation - Michael addition - azaheterocycles - phase-transfer catalysis - green chemistrySupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Estep KG, Josef KA, Bacon ER, Carabateas PM, Rumneyl VS, Pilling GM, Krafte DS, Volberg WA, Dillon K, Dugrenier N, Briggs GM, Camiff PC, Gorczyca WP, Stankus GP, Ezrid AM. J. Med. Chem. 1995; 38: 2582
- 1b Guillarme S, Legoupy S, Bourgougnon N, Aubertin A.-M, Huet F. Tetrahedron 2003; 59: 9635
- 2a Zhong M, Robins MJ. J. Org. Chem. 2006; 71: 8901
- 2b Zhong M, Nowak I, Cannon JF, Robins MJ. J. Org. Chem. 2006; 71: 4216
- 3 Legraverend M. Tetrahedron 2008; 64: 8585
- 4 Joule JA, Mills K, Smith GF. Heterocyclic Chemistry. 3rd ed. Chapman and Hall; London: 1995: 516
- 5 Delarue-Cochin S, McCort-Tranchepain I. Org. Biomol. Chem. 2009; 7: 706
- 7 Qu G.-R, Zhang Z.-G, Geng M.-W, Ran X, Zhao L, Guo H.-M. Synlett 2007; 721
- 8 Zare A, Hasaninejad A, Safinejad R, Moosavi ZareA. R, Khalafi-Nezhad A, Beyzavi MH, Miralai-Moredi M, Dehghani E, Kazerooni-Mojarrad P. ARKIVOC 2008; (xvi): 61
- 9 Khalafi-Nezhad A, Zarea A, Rad MN. S, Mokhtari B, Parhami A. Synthesis 2005; 419
- 10a Zare A, Hasaninejad A, Beyzavi MH, Parhami A, Moosavi ZareA. R, Khalafi-Nezhad A, Sharghi H. Can. J. Chem. 2008; 86: 317
- 10b Zare A, Hasaninejad A, Beyzavi MH, MoosaviZare AR, Safinejad R, Khalafi-Nezhad A, Asadi F, Baramaki L, Jomhori-Angali S, Ghaleh-Golobi R. Synth. Commun. 2009; 39: 139
- 11 Borissow CN, Black SJ, Paul M, Tovey SC, Dedos SG, Taylor CW, Potter BV. L. Org. Biomol. Chem. 2005; 3: 245
- 12 Esposito A, Perino MG, Taddei M. Eur. J. Org. Chem. 1999; 931
- 13 Procedure for the Synthesis of 9-(2-tert-Butoxycarbonyl-ethyl)adenine (5b) Adenine 1 (2.027 g, 15 mmol), DABCO(1.681 g, 15 mmol), TBAB (967 mg, 3 mmol) were ground until a homogeneous mass was obtained, then 4b (3.27 mL, 22.5 mmol) was added. The reaction mixture was stirred using a dark magnetic bar for 30 min before irradiation at 200 W in a microwave oven. The reaction mixture was suspended in CHCl3 (450 mL) and washed with H2O (3 × 250 mL). The organic layer was dried (MgSO4), filtered, and evaporated under reduced pressure to give 2.81 g (71%) of 5b as a white powder
- 14 Spectral and Analytical Data of Compound 5b Mp 182–184 °C (lit.12 183–185 °C); Rf = 0.6 (CH2Cl2–MeOH = 9:1). 1H NMR (500 MHz, CDCl3): δ = 8.14 (s, 1H, H-2), 8.09 (s, 1H, H-8), 7.16 (s, 2H, NH2), 4.34 (t, J = 7.0 Hz, 2H, CH2N), 2.85 (t, J = 7.0 Hz, 2H, CH2CO), 1.31 (s, 9H, CH3). 13C NMR (500 MHz, DMSO): δ = 169.7 (CO), 155.9 (Cq-Ar), 152.3 (C-2), 149.4 (Cq-Ar), 140.9 (C-8), 118.7 (Cq-Ar), 80.4 (Cq-t-Bu), 39.0 (CH2N), 34.9 (CH2CO), 27.8 (CH3). IR: ν = 3292 (NH2), 1723 (CO) cm–1. MS (ESI+): m/z (%) = 264.0 (100) [M+H]+. HRMS (ESI+) calcd for [C12H17N5O2 +H]+: 264.1457; found: 264.1451
- 15 Karskela T, Lönnberg H. J. Org. Chem. 2009; 74: 9446
- 16 Jennings LD, Foreman KW, Rush TS III, Tsao DH. H, Mosyak L, Kincaid SL, Sukhdeo MN, Sutherland AG, Ding W, Kenny CH, Sabus CL, Liu H, Dushin EG, Moghazeh SL, Labthavikul P, Petersen PJ, Tuckman M, Ruzin AV. Bioorg. Med. Chem. 2004; 12: 5115
- 17a Robarge MJ, Bom DC, Tumey LN, Varga N, Gleason E, Silver D, Song J, Murphy SM, Ekema G, Doucette C, Hanniford D, Palmer M, Pawlowski G, Danzig J, Loftus M, Hunady K, Sherf BA, Mays RW, Stricker-Krongrad A, Brunden KR, Harrington JJ, Bennani YL. Bioorg. Med. Chem. Lett. 2005; 15: 1749
- 17b Yeom C.-E, Kim MJ, Kim BM. Tetrahedron 2007; 63: 904
- 17c Ferlin MG, Bortolozzi R, Brun P, Castagliuolo I, Hamel E, Basso G, Viola G. ChemMedChem 2010; 5: 1373
- 17d Hou X, Hemit H, Yong J, Nie L, Aisa HA. Synth. Commun. 2010; 40: 973 ; and references cited therein
- 18 Cooper LC, Chicchi GG, Dinnell K, Elliott JM, Hollingworth GJ, Kurtz MM, Locker KL, Morrison D, Shaw DE, Tsao K.-L, Watt AP, Williams AR, Swain CJ. Bioorg. Med. Chem. Lett. 2001; 11: 1233
- 19a Mohammadpoor-Baltork I, Memarian HR, Khosropour AR, Nikoofar K. Heterocycles 2006; 68: 1837
- 19b Kumar V, Kaur S, Kumar S. Tetrahedron Lett. 2006; 47: 7001
- 20 Couthon-Gourvès H, Simon G, Haelters J.-P, Corbel B. Synthesis 2006; 81
- 21 De Rosa M, Soriente A. Tetrahedron 2010; 66: 2981
- 22 Bogdal D, Pielichowski J, Jaskot K. Heterocycles 1997; 45: 715
- 23 Boncel SA, Mączka M, Walczak KZ. Tetrahedron 2010; 66: 8450
- 24 Optimized Procedure for the Synthesis of 1-(2-tert-Butoxycarbonylethyl)indole (7b) Indole 2 (1.77 g, 15 mmol), DABCO (1.681 g, 15 mmol), TBAB (967 mg, 3 mmol) were ground until a homogeneous mass was obtained, then 4b (3.27 mL, 22.5 mmol) was added. The reaction mixture was stirred using a dark magnetic bar for 30 min. KOH (337 mg, 6 mmol) was added, and the mixture was stirred for further 2 min just before irradiation at 200 W in a microwave oven. The reaction mixture was suspended in CH2Cl2 (200 mL), washed with H2O (3 × 200 mL). The organic layer was dried (MgSO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (cyclohexane–EtOAc = 99:1) to give 3.06 g (83%) of 7b as a brown oil
- 25 Spectral and Analytical Data of Compound 7b 1H NMR (500 MHz, DMSO): δ = 7.56 (d, J = 8.0 Hz, 1 H, H-7), 7.50 (d, J = 8.2 Hz, 1 H, H-4), 7.35 (d, J = 3.2 Hz, 1 H, H-2), 7.14 (t, J = 8.0 Hz, 1 H, H-6), 7.02 (t, J = 8.2 Hz, H-5), 6.42 (d, J = 3.2 Hz, 1 H, H-3), 4.40 (t, J = 6.7 Hz, 2 H, CH2N), 2.74 (t, J = 6.7 Hz, 2 H, CH2CO), 1.32 (s, 9 H, CH3). 13C NMR (500 MHz, CDCl3): δ = 170.2 (CO), 135.7, 128.7 (Cq-Ar), 127.8 (C-4), 121.4 (C-5), 120.9 (C-7), 119.3 (C-6), 109.1 (C-2), 101.3 (C-3), 80.7 (Cq-t-Bu), 41.7 (CH2N), 36.0 (CH2CO), 27.8 (CH3). IR: ν = 1726 (CO) cm–1. MS (ESI+): m/z (%) = 246.1 (100) [M+H]+. HRMS (ESI+): m/z calcd for [C15H19N5O2 +H]+: 246.1489; found: 246.1488
- 26 Wang M.-L, Liu B.-L. J. Chin. Inst. Chem. Eng. 2007; 38: 85
- 27 Lira EP, Huffman CW. J. Chem. Soc. 1966; 2188