Subscribe to RSS
DOI: 10.1055/s-0031-1290750
Iodine(III)-Mediated Cyclization of Unsaturated O-Alkyl Hydroxamates: Silyl-Assisted Access to α-Vinyl and α-(2-Silylvinyl) Lactams
Publication History
Received: 20 February 2012
Accepted: 24 February 2012
Publication Date:
22 March 2012 (online)
Abstract
The embodiment of lactam rings within a wealth of physiologically active natural products and pharmaceutical agents ensures that the development of synthetic methods, which facilitate the preparation of these saturated N-heterocycles, is of critical importance. Herein the development of a versatile method for the synthesis of 4 to 8-membered α-vinyl and α-(2-silylvinyl) lactams involving the iodine(III)-mediated oxidative cyclization of unsaturated O-alkyl hydroxamates, which encompass an allylsilane, is reported. Importantly, the outcome of this transformation can be effectively controlled through variation of the substitution pattern at the silicon center. While allyltrimethylsilanes undergo ring closure with desilylation to form α-vinyl lactams, the corresponding triisopropyl and triphenylsilanes cyclize without loss of the larger silyl group to form E-vinylsilanes with excellent stereoselectivity. From a mechanistic standpoint, it is proposed that this reaction proceeds via concerted alkene addition of a singlet nitrenium ion (or its equivalent) to form a bicyclic N-acyl-N-alkoxyaziridinium ion, which undergoes eliminative ring opening.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References
- 1a Colvin EW. Chem. Soc. Rev. 1978; 7: 15
- 1b Hosomi A. Acc. Chem. Res. 1988; 21: 200
- 1c Fleming I, Dunogués J, Smithers R. Org. React. 1989; 37: 57
- 1d Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
- 1e Masse CE, Panek JS. Chem. Rev. 1995; 95: 1293
- 1f Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
- 1g Landais Y, Chabaud L, James P. Eur. J. Org. Chem. 2004; 15: 3173
- 1h Schmidt A, Knölker H.-J. Synlett 2010; 2207
- 2a Loreto MA, Tardella PA, Tofani D. Tetrahedron Lett. 1995; 36: 8295
- 2b Loreto MA, Pompei F, Tardella PA, Tofani D. Tetrahedron 1997; 53: 15853
- 2c Loreto MA, Tardella PA, Tedeschi L, Tofani D. Tetrahedron Lett. 1997; 38: 5717
- 2d Kim DY, Choi JS, Rhie DY, Chang SK, Kim IK. Synth. Commun. 1997; 27: 2753
- 2e Loreto MA, Pompili C, Tardella PA. Tetrahedron 2001; 57: 4423
- 2f Gasperi T, Antonietta LM, Tardella PA, Gambacorta A. Tetrahedron Lett. 2002; 43: 3017
- 2g Capuzzi M, Gambacorta A, Gasperi T, Loreto MA, Tardella PA. Eur. J. Org. Chem. 2006; 5076
- 3 Mayr H, Grimm K. J. Org. Chem. 1992; 57: 1057
- 4a Laporterie A, Dubac J, Lesbre M. J. Organomet. Chem. 1975; 101: 187
- 4b Ohashi S, Ruch WE, Butler GB. J. Org. Chem. 1981; 46: 614
- 4c Hojo M, Murakami C, Aihara H, Tomita K, Miura K, Hosomi A. J. Organomet. Chem. 1995; 499: 155
- 4d Dey RT, Haque SA, Hazra A, Basak S, Sarkar TK. Tetrahedron Lett. 2007; 48: 6671
- 4e Dey RT, Sarkar TK. J. Org. Chem. 2010; 75: 4521
- 5 Ducray R, Cramer N, Ciufolini MA. Tetrahedron Lett. 2001; 42: 9175
- 6a Olah GA, Rochin C. J. Org. Chem. 1987; 52: 701
- 6b Beresis RT, Masse CE, Panek JS. J. Org. Chem. 1995; 60: 7714
- 6c Hwu JR, Chen K.-L, Ananthan S, Patel HV. Organometallics 1996; 15: 499
- 6d Masse CE, Knight BS, Stavropoulos P, Panek JS. J. Am. Chem. Soc. 1997; 119: 6040
- 7a Jolibois H, Doucet A, Perrot R. Helv. Chim. Acta 1975; 58: 1801
- 7b Jolibois H, Doucet A, Perrot R. Helv. Chim. Acta 1976; 59: 1352
- 8 Takeuchi H, Shiobara Y, Kawamoto H, Koyama K. J. Chem. Soc., Perkin Trans. 1 1990; 321
- 9 Abramovitch RA, Beckert JM, Gibson HH, Belcher A, Hundt G, Sierra T, Olivella S, Pennington WT, Sole A. J. Org. Chem. 2001; 66: 1242
- 10a Gassman PG. Acc. Chem. Res. 1970; 3: 26
- 10b Abramovitch RA, Jeyaraman R. Nitrenium Ions . In Azides and Nitrenes . Scriven EF. V. Academic Press; Orlando: 1984: 297
- 10c Kirillov NF. Russ. Chem. Rev. 1992; 61: 1061
- 10d Falvey DE. J. Phys. Org. Chem. 1999; 12: 589
- 10e Novak M, Rajagopal S. Adv. Phys. Org. Chem. 2001; 36: 167
- 10f Falvey DE In Reactive Intermediate Chemistry . Moss RA, Platz M, Jones M. Wiley-Interscience; Hoboken N.J.: 2004: 593
- 10g Borodkin GI, Shubin VG. Russ. Chem. Rev. 2008; 77: 419
- 10h Kikugawa Y. Heterocycles 2009; 78: 571
- 11a Wardrop DJ, Bowen EG, Forslund RE, Sussman AD, Weerasekera SL. J. Am. Chem. Soc. 2009; 132: 1188
- 11b Bowen EG, Wardrop DJ. Org. Lett. 2010; 12: 5330
- 11c Wardrop DJ, Bowen EG. Org. Lett. 2011; 13: 2376
- 12a Wardrop DJ, Basak A. Org. Lett. 2001; 3: 1053
- 12b Wardrop DJ, Zhang W. Org. Lett. 2001; 3: 2353
- 12c Wardrop DJ, Burge MS, Zhang W, Ortiz JA. Tetrahedron Lett. 2003; 44: 2587
- 12d Wardrop DJ, Landrie CL, Ortiz JA. Synlett 2003; 1352
- 12e Wardrop DJ, Burge MS. J. Org. Chem. 2004; 69: 1230
- 12f Wardrop DJ, Zhang WM, Landrie CL. Tetrahedron Lett. 2004; 45: 4229
- 12g See reference 10h
- 12h See reference 11
- 13a Lillocci C. J. Org. Chem. 1988; 53: 1733
- 13b Gionta G, Lillocci C. J. Phys. Org. Chem. 1993; 6: 187
- 14 For a theoretical treatment of the nitrenium-alkene addition process, see: Hopkinson AC, Lien MH, Csizmadia IG, Yates K. Theor. Chim. Acta 1980; 55: 1
- 15a Ochiai M, Fujita E, Arimoto M, Yamaguchi H. Tetrahedron Lett. 1983; 24: 777
- 15b Ochiai M, Fujita E, Arimoto M, Yamaguchi H. Chem. Pharm. Bull. 1985; 33: 41
- 15c Ochiai M, Fujita E, Arimoto M, Yamaguchi H. Chem. Pharm. Bull. 1985; 33: 989
- 15d Arimoto M, Yamaguchi H, Fujita E, Ochiai M, Nagao Y. Tetrahedron Lett. 1987; 28: 6289
- 15e Arimoto M, Yamaguchi H, Fujita E, Nagao Y, Ochiai M. Chem. Pharm. Bull. 1989; 37: 3221
- 15f Yoshimura Y, Ohta M, Imahori T, Imamichi T, Takahata H. Org. Lett. 2008; 10: 3449
- 16a Quideau S, Looney MA, Pouységu L. Org. Lett. 1999; 1: 1651
- 16b Bérard D, Giroux M.-A, Racicot L, Sabot C, Canesi S. Tetrahedron 2008; 64: 7537
- 17a Crowe WE, Goldberg DR, Zhang ZJ. Tetrahedron Lett. 1996; 37: 2117
- 17b Schuster M, Lucas N, Blechert S. Chem. Commun. 1997; 823
- 17c Cossy J, Bouzbouz S, Hoveyda AH. J. Organomet. Chem. 2001; 624: 327
- 17d Engelhardt FC, Schmitt MJ, Taylor RE. Org. Lett. 2001; 3: 2209
- 17e Bouzbouz S, De Lemos E, Cossy J. Adv. Synth. Catal. 2002; 344: 627
- 17f Thibaudeau S, Gouverneur V. Org. Lett. 2003; 5: 4891
- 17g Rodgen SA, Schaus SE. Angew. Chem. Int. Ed. 2006; 45: 4929
- 17h Huber JD, Perl NR, Leighton JL. Angew. Chem. Int. Ed. 2008; 47: 3037
- 17i Wilkinson SC, Lozano O, Schuler M, Pacheco MC, Salmon R, Gouverneur V. Angew. Chem. Int. Ed. 2009; 48: 7083
- 17j Bouzbouz S. Synlett 2011; 1888
- 18 For a review of the preparation of organosilanes via ruthenium catalysis, see: Marciniec B, Pietraszuk C. Top. Organomet. Chem. 2004; 11: 197
- 19 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
- 20 Block MH, Cane DE. J. Org. Chem. 1988; 53: 4923
- 21 For the iodine(III)-mediated conversion of allylsilanes to allylic esters, see: references 15b,c
- 22 For a review of the unique properties imparted by the triisopropylsilyl group, see: Rücker C. Chem. Rev. 1995; 95: 1009
- 23 For other examples of the formation of vinylsilanes during the reaction of allylsilanes with electrophiles, see: Dubac J, Laporterie A. Chem. Rev. 1987; 87: 319
- 24 Reductive cleavage of N-methoxy lactams to the corresponding NH lactams can be accomplished with range of reducing agents, including Mo(CO)6 (reference 11)
- 25a Keck GE, Webb RR. J. Am. Chem. Soc. 1981; 103: 3173
- 25b Keck GE, Webb RR. J. Org. Chem. 1982; 47: 1302
- 25c Matsumura Y, Aoyagi S, Kibayashi C. Org. Lett. 2003; 5: 3249
- 25d See references 12a–f
- 26 Still WC, Kahn M, Mitra A. J. Org. Chem. 1978; 43: 2923
- 27 Loudon GM, Radhakrishna AS, Almond MR, Blodgett JK, Boutin RH. J. Org. Chem. 1984; 49: 4272
For reviews of the chemistry of allylsilanes, see:
For the nitrosylation-nitration of allylsilanes with N2O3, see:
For reviews of nitrenium ion chemistry, see:
For the generation of nitrenium ions through iodine(III)-mediated N-oxidation, see:
For discussions of the competition between substitutive and eliminative aziridinium ion ring opening, see:
For examples of the SE2′-reaction of allylsilanes with iodine(III) reagents, see:
For examples where allylsilanes act as secondary nucleophiles in iodine(III)-mediated oxidation processes, see:
For the cross-metathesis of allylsilanes, see:
For the use of structurally related N-hydroxy-α-vinyl lactams in natural product synthesis, see: