Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2012; 23(9): 1358-1360
DOI: 10.1055/s-0031-1290956
DOI: 10.1055/s-0031-1290956
letter
Total Synthesis of (±)-Moluccanic Acid Methyl Ester
Further Information
Publication History
Received: 17 February 2012
Accepted after revision: 12 March 2012
Publication Date:
10 May 2012 (online)
Abstract
An effective total synthesis of the trinorditerpenoid moluccanic acid methyl ester has been achieved. The synthesis features a Robinson annulation, followed by aromatization to construct the aromatic ring and Baeyer–Villiger oxidation of the A ring to finish the target molecule.
Key words
aromatization - moluccanic acid - diterpenoids - Baeyer–Villiger oxidation - Robinson annulationSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 Liu H, Di Y, Yang J, Teng F, Lu Y, Ni W, Chen C, Hao X. Tetrahedron Lett. 2008; 49: 5150
- 2 Ramachandran S, Newman MS. Org. Synth. 1961; 41: 38 ; Org. Synth., Coll. Vol. 5, 1973, 486
- 3a Bradshaw B, Etxebarria-Jardí G, Bonjoch J, Viózquez SF, Guillena G, Nájera C. Org. Synth. 2011; 88: 330
- 3b Zhou P, Zhang L, Luo S, Cheng J.-P. J. Org. Chem. 2012; 77: 2526
- 4 Pemp A, Seifert K. Tetrahedron Lett. 1997; 38: 2081
- 5a Assefa H, Nimrod A, Walker L, Sindelar R. Bioorg. Med. Chem. Lett. 2001; 11: 1619
- 5b Fernández-Mateos A, Teijón PH, Clemente RR, González RR, González FS. Synlett 2007; 2718
- 5c Snitman DL, Tsai M.-Y, Watt DS, Edwards CL, Stotter PL. J. Org. Chem. 1979; 44: 2838
- 5d Jung ME, Duclos BA. Tetrahedron 2006; 62: 9321
- 6 For a similar route to tricyclic enone 6, see: Yajima A, Mori K. Eur. J. Org. Chem. 2000; 4079
- 7a Burns NZ, Krylova IN, Hannoush RN, Baran PS. J. Am. Chem. Soc. 2009; 131: 9172
- 7b Chen K, Liu C, Deng L, Xu G. Steroids 2010; 75: 513
- 7c Izawa Y, Pun D, Stahl SS. Science 2011; 333: 209
- 8 Bhatt S, Nayak SK. Tetrahedron Lett. 2006; 47: 8395
- 9 Rao PN, Cessac JW, Kim HK. Steroids 1994; 59: 621
- 10 For a solution to this problem in a related structure, see: Kim MB, Shaw JT. Org. Lett. 2010; 12: 3324
- 11 For a recent example of a Baeyer–Villiger oxidation on a tricyclic ketone, see: Yokoe H, Mitsuhashi C, Matsuoka Y, Yoshimura T, Yoshida M, Shishido K. J. Am. Chem. Soc. 2011; 133: 8854
- 12a Renz M, Meunier B. Eur. J. Org. Chem. 1999; 737
- 12b ten Brink GJ, Arends IW. C. E, Sheldon RA. Chem. Rev. 2004; 104: 4105
- 13 Maitraie D, Hung C.-F, Tu H.-Y, Liou Y.-T, Wei B.-L, Yang S.-C, Wang J.-P, Lin C.-N. Bioorg. Med. Chem. 2009; 17: 2785
- 14 Methyl 3-[(1S,2R)-7-Hydroxy-2-(2-hydroxypropan-2-yl)-1-methyl-1,2,3,4-tetrahydronaphthalen-1-yl]-propanoate (15) and Methyl 3-[(1S,2S)-7-Hydroxy-1-methyl-2-(prop-1-en-2-yl)-1,2,3,4-tetrahydro-naphthalen-1-yl]propanoate (2) PTSA monohydrate (2.03 g, 10.7 mmol) was added in one portion to a stirred solution of lactone 14 (520 mg, 1.34 mmol) in MeOH (10 mL) at r.t. The resulting solution was stirred overnight, treated with sat. NaHCO3 solution (30 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with sat. NaCl solution (30 mL), dried over MgSO4, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (PE–EtOAc = 9:1 to 4:1) to give the two esters 15 (320 mg, 60%) and 2 (160 mg, 30%) as colorless oils. Ester 2: Rf = 0.33 (PE–EtOAc = 4:1). 1H NMR (400 MHz, CDCl3): δ = 1.19 (s, 3 H, 1-CH3), 1.77 (s, 3 H, CH 3C=CH2), 1.56 (s, 3 H, 5-CH3), 1.80–2.15 (m, 5 H, 2′-H, 2 × 3′-H, 2 × 3-H), 2.21–2.29 (m, 1 H, 2′-H), 2.38 (dd, J = 11.4, 3.0 Hz, 1 H, 2-H), 2.68–2.75 (m, 2 H, 2 × 4-H), 3.61 (s, 3 H, OCH3), 4.69 (br s, 1 H, =CH2), 4.94 (br s, 1 H, =CH2), 6.61 (dd, J = 8.1, 2.5 Hz, 1 H, 6-H), 6.75 (d, J = 2.5 Hz, 1 H, 5-H), 6.89 (d, J = 8.1 Hz, 1 H, 8-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.8 (CH3C=CH2), 24.7 (C-3), 27.8 (1-CH3), 29.5 (C-2′, C-4), 34.6 (C-3′), 41.1 (C-1), 47.0 (C-2), 51.7 (OCH3), 112.9 (C-8), 113.3 (C-6), 114.3 (C=CH2), 129.1 (C-4a), 130.1 (C-5), 144.5 (C-8a), 146.6 (C=CH2), 154.0 (C-7), 175.0 (ester). ESI-HRMS: m/z calcd for C18H24O3Na [M + Na]+: 311.161766; found: 311.161980. Ester 15: Rf = 0.10 (PE–EtOAc = 4:1). 1H NMR (400 MHz, CDCl3): δ = 1.29 [s, 3H, C(CH3)2], 1.35 (s, 3 H, 1-CH3), 1.47 [s, 3 H, C(CH3)2], 1.50–1.76 (m, 3 H, 2 × 3-H, 2-H), 1.92–2.10 (m, 3 H, 2 × 3′-H, 2′-H), 2.17 (s, 1 H, OH), 2.56–2.69 (m, 2 H, 2′-H, 4-H), 2.82–2.88 (m, 1 H, 4-H), 3.60 (s, 3 H, OCH3), 6.58 (dd, J = 8.3, 2.5 Hz, 1 H, 6-H), 6.79 (d, J = 2.3 Hz, 1 H, 8-H), 6.85 (d, J = 8.3 Hz, 1 H, 5-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 24.5 (C-3), 26.8 [C(CH3)2], 27.2 (1-CH3), 29.6 (C-4), 30.7 [C(CH3)2], 33.2 (C-2′), 36.6 (C-3′), 43.4 (C-1), 48.7 (C-2), 51.8 (OCH3), 75.5 [C(CH3)2], 112.9 (C-6), 113.2 (C-8), 129.6 (C-4a), 129.8 (C-5), 146.4 (C-8a), 154.4 (C-7), 176.3 (C-1′) ppm. ESI-HRMS: m/z calcd for C18H26O4Na [M + Na]+: 329.172330; found: 329.172482
- 15 MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide
- 16a Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE. Int. J. Exp. Pathol. 2004; 85: 233
- 16b Vintonyak VV, Calà M, Lay F, Kunze B, Sasse F, Maier ME. Chem.–Eur. J. 2008; 14: 3709
- 17 Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR, Feinstein SC, Wang X, Xu X. Chem. Biol. 2009; 16: 712
For preparations of the Wieland–Miescher ketone with high ee value, see:
See also:
For some representative methods, see:
For some reviews, see: