Synlett 2012; 23(10): 1463-1466
DOI: 10.1055/s-0031-1291007
letter
© Georg Thieme Verlag Stuttgart · New York

Sonogashira Reactions of 2,3,4,5-Tetrabromofuran: Synthesis of 2,3,4,5-Tetraalkynylfurans, 2,3,5-Trialkynylfurans and 2,5-Dialkynylfurans

Imran Malik
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
b   Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
,
Zeeshan Ahmad
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
,
Sebastian Reimann
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
c   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
,
Muhammed Nawaz
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
,
Tamás Patonay
d   Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary
,
Peter Langer*
a   Institut für Chemie, Universität Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany
c   Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
› Author Affiliations
Further Information

Publication History

Received: 21 March 2012

Accepted: 23 March 2012

Publication Date:
18 May 2012 (online)


Abstract

2,3,4,5-Tetrabromofuran is transformed into a variety of alkynyl-substituted furans by regioselective Sonogashira cross-coupling reactions. In this context, the first 2,3,4,5-tetraalkynylfurans and 2,3,5-trialkynylfurans were prepared. 2,3,4,5-Tetraalkynylfurans and 2,5-dialkynyl-3,4-diarylfurans show interesting fluorescence properties.

Supporting Information

 
  • References

    • 1a Hou XL, Yang Z, Wong HN. C In Progress in Heterocyclic Chemistry . Vol. 15. Gribble GW, Gilchrist TL. Pergamon; Oxford: 2003: 167
    • 1b Friedrichsen W In Comprehensive Heterocyclic Chemistry. Vol. 2. Katritzky AR, Rees CW, Scriven EF. V. Elsevier; Amsterdam: 1996: 359
    • 1c Shea KM. Palladium in Heterocyclic Chemistry. Vol. 26. Elsevier; Amsterdam: 2007: 303
  • 5 Lind P, Carlsson M, Eliasson B, Glimsdal E, Lindgren M, Lopes C, Boman L, Norman P. Mol. Phys. 2009; 107: 629
  • 6 Greco NJ, Tor Y. Tetrahedron 2007; 63: 3515
  • 7 Yamaguchi T, Irie M. J. Mater. Chem. 2006; 16: 4690
  • 8 Lechel T, Dash J, Brudgam I, Reissig HU. Eur. J. Org. Chem. 2008; 3647
  • 10 Bisagni E, Marquet JP, Bourzat JD, Depin JJ, Andre-Louisfert J. Bull. Chem. Soc. Fr. 1971; 4041
  • 11 Courmier RA, Grosshans CA, Skibbe SL. Synth. Commun. 1988; 7: 677
  • 12 Sammond DM, Sammakia T. Tetrahedron Lett. 1996; 37: 6065
  • 14 Mross G, Holtz E, Langer P. J. Org. Chem. 2006; 71: 8045
  • 15 Marshall JA, Bennett C. J. Org. Chem. 1994; 59: 6110
  • 16 Tso HH, Tsay H. Tetrahedron. Lett. 1997; 38: 6869
  • 17 Mortensn DS, Rodriguez AL, Carlson KE, Sun J, Katzenellenbogen BS, Katzenellenbogen JA. J. Med. Chem. 2001; 44: 3838

    • For reviews of site-selective palladium(0)-catalyzed cross-coupling reactions, see:
    • 18a Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 18b Schnürch M, Flasik R, Khan AF, Spina M, Mihovilovic MD, Stanetty P. Eur. J. Org. Chem. 2006; 3283
    • 18c Wang R, Manabe K. Synthesis 2009; 1405
    • 18d For a simple guide for the prediction of the site selectivity of palladium-catalyzed cross-coupling reactions based on 1H NMR data of the nonhalogenated derivatives, see: Handy ST, Zhang Y. Chem. Commun. 2006; 299
  • 21 Hussain M, Khera RA, Nguyen TH, Langer P. Org. Biomol. Chem. 2011; 9: 370
  • 22 Dang TT, Dang TT, Rasool N, Villinger A, Langer P. Adv. Synth. Catal. 2009; 351: 1595
  • 24 Ullah F, Dang TT, Heinicke J, Villinger A, Langer P. Synlett 2009; 838
  • 25 Shoppee CW. J. Chem. Soc., Perkin Trans. 1 1985; 45
  • 26 General Procedure for Sonogashira Coupling ReactionsA suspension of tetrabromofuran (1), Pd(PPh3)2Cl2 (10 mol%), CuI (5 mol%) in diisopropylamine was degassed three times in a pressure tube. The acetylene (1.2 equiv per bromine atom) was added using a syringe. The mixture was heated at the indicated temperature (60–80 °C) for 2–4 h. The reaction mixture was filtered and the residue was washed with CH2Cl2. The filtrate was washed with a saturated solution of ammonium chloride (2 x 25 mL), water (2 x 25 mL) and was subsequently dried over anhydrous Na2SO4. The solvent was removed in vacuo. The product was purified by column chromatography (silica gel, EtOAc–heptanes).3,4-Dibromo-2,5-bis[(4-tert-butylphenyl)ethynyl]furan (3a)Starting with 1 (150 mg; 0.40 mmol), 4-tert-butylphenyl-acetylene (2a) (0.16 mL, 0.94 mmol), CuI (5 mol%), Pd(PPh3)2Cl2 (10 mol%), and diisopropylamine (5 mL), 3a was isolated as a white solid (163 mg, 78%); mp 197–199 °C. 1H NMR (300 MHz, CDCl3): δ = 1.36 (s, 18 H, CH3), 7.40 (d, 4 H, J = 8.6 Hz), 7.51 (d, 4 H, J = 8.6 Hz). 13C NMR (75.4 MHz, CDCl3): δ = 31.1 (CH3), 34.9, 81.5, 98.8, 109.3, 118.8 (C), 125.5, 132.3 (CH), 136.7, 152.6 (C). IR (KBr): ν = 2952 (w), 1497 (m), 1461 (m), 1362 (m), 1266 (m), 1102 (m), 1013 (m), 923 (w), 833 (s) cm–1. GC-MS (EI, 70 eV): m/z (%) = 536 (M+, [79Br, 79Br], 30), 538 (M+, [79Br, 81Br], 100), 540 (M+, [81Br, 81Br], 62), 523 (52), 508 (2), 493 (4), 467 (3), 350 (3), 314 (18), 299 (26), 254 (15), 226 (9). HRMS (EI, 70 eV): calcd for C28H26Br2O (M+, [79Br, 79Br]: 536.03449; found 536.03353; calcd for C28H26Br2O (M+, [79Br, 81Br]: 538.03245; found 538.03238; calcd for C28H26Br2O (M+, [81Br, 81Br]: 540.03040; found 540.03176