Semin Neurol 2011; 31(5): 449-460
DOI: 10.1055/s-0031-1299784
© Thieme Medical Publishers

Genetics of Dementia

Henry L. Paulson1 , 2 , Indu Igo1
  • 1Department of Neurology, University of Michigan, Ann Arbor, Michigan
  • 2University of Michigan, Alzheimers Disease Center, Ann Arbor, Michigan
Further Information

Publication History

Publication Date:
21 January 2012 (online)

ABSTRACT

Genetic factors are now recognized to play an important role in most age-related dementias. Although other factors, including aging itself, contribute to dementia, in this review the authors focus on the role of specific disease-causing genes and genetic factors in the most common age-related dementias. They review each dementia within the context of a genes/environment continuum, with varying levels of genetic versus environmental influence. All major classes of dementia will be discussed but greatest attention will be given to the most common dementia, Alzheimer's disease, for which several new genetic factors were recently identified.

REFERENCES

  • 1 Bertram L, Lill C M, Tanzi R E. The genetics of Alzheimer disease: back to the future.  Neuron. 2010;  68 (2) 270-281
  • 2 Van Broeckhoven C. The future of genetic research on neurodegeneration.  Nat Med. 2010;  16 (11) 1215-1217
  • 3 Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer's disease.  Hum Mol Genet. 2010;  19 (R1) R12-R20
  • 4 Kim J, Basak J M, Holtzman D M. The role of apolipoprotein E in Alzheimer's disease.  Neuron. 2009;  63 (3) 287-303
  • 5 Green R C, Roberts J S, Cupples L A REVEAL Study Group et al. Disclosure of APOE genotype for risk of Alzheimer's disease.  N Engl J Med. 2009;  361 (3) 245-254
  • 6 Ashe K H, Zahs K R. Probing the biology of Alzheimer's disease in mice.  Neuron. 2010;  66 (5) 631-645
  • 7 Kim D, Tsai L H. Bridging physiology and pathology in AD.  Cell. 2009;  137 (6) 997-1000
  • 8 Thinakaran G, Koo E H. Amyloid precursor protein trafficking, processing, and function.  J Biol Chem. 2008;  283 (44) 29615-29619
  • 9 LaFerla F M. Pathways linking Abeta and tau pathologies.  Biochem Soc Trans. 2010;  38 (4) 993-995
  • 10 Ittner L M, Ke Y D, Delerue F et al.. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models.  Cell. 2010;  142 (3) 387-397
  • 11 Cruchaga C, Kauwe J S, Mayo K et al.. SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer's disease.  PLoS Genet. 2010;  6 (9) pii: e1001101
  • 12 Fagan A M, Head D, Shah A R et al.. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly.  Ann Neurol. 2009;  65 (2) 176-183
  • 13 Holtzman D M. Cerebrospinal fluid beta-amyloid 42, tau, and P-tau: confirmation now realization.  Arch Neurol. 2009;  66 (12) 1552-1553
  • 14 Hu W T, Chen-Plotkin A, Arnold S E et al.. Novel CSF biomarkers for Alzheimer's disease and mild cognitive impairment.  Acta Neuropathol. 2010;  119 (6) 669-678
  • 15 Jack Jr C R, Knopman D S, Jagust W J et al.. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.  Lancet Neurol. 2010;  9 (1) 119-128
  • 16 Jagust W J, Landau S M, Shaw L M Alzheimer's Disease Neuroimaging Initiative et al. Relationships between biomarkers in aging and dementia.  Neurology. 2009;  73 (15) 1193-1199
  • 17 Morris J C, Roe C M, Grant E A et al.. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease.  Arch Neurol. 2009;  66 (12) 1469-1475
  • 18 Vemuri P, Wiste H J, Weigand S D Alzheimer's Disease Neuroimaging Initiative et al. Serial MRI and CSF biomarkers in normal aging, MCI, and AD.  Neurology. 2010;  75 (2) 143-151
  • 19 Sperling R A, Aisen P S, Beckett L A et al.. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  Alzheimers Dement. 2011;  7 (3) 280-292
  • 20 Bertram L, McQueen M B, Mullin K, Blacker D, Tanzi R E. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database.  Nat Genet. 2007;  39 (1) 17-23
  • 21 Colhoun H M, McKeigue P M, Davey Smith G. Problems of reporting genetic associations with complex outcomes.  Lancet. 2003;  361 (9360) 865-872
  • 22 Harold D, Abraham R, Hollingworth P et al.. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease.  Nat Genet. 2009;  41 (10) 1088-1093
  • 23 Lambert J C, Heath S, Even G European Alzheimer's Disease Initiative Investigators et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease.  Nat Genet. 2009;  41 (10) 1094-1099
  • 24 Seshadri S, Fitzpatrick A L, Ikram M A CHARGE Consortium et al. Genome-wide analysis of genetic loci associated with Alzheimer disease.  JAMA. 2010;  303 (18) 1832-1840
  • 25 Hollingworth P, Harold D, Sims R Alzheimer's Disease Neuroimaging Initiative et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease.  Nat Genet. 2011;  43 (5) 429-435 10.1038/ng.803
  • 26 Bettens K, Sleegers K, Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future.  Hum Mol Genet. 2010;  19 (R1) R4-R11
  • 27 Yerbury J J, Poon S, Meehan S et al.. The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures.  FASEB J. 2007;  21 (10) 2312-2322
  • 28 Kirszbaum L, Bozas S E, Walker I D. SP-40,40, a protein involved in the control of the complement pathway, possesses a unique array of disulphide bridges.  FEBS Lett. 1992;  297 (1–2) 70-76
  • 29 Thambisetty M, Simmons A, Velayudhan L et al.. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease.  Arch Gen Psychiatry. 2010;  67 (7) 739-748
  • 30 Calero M, Rostagno A, Frangione B, Ghiso J. Clusterin and Alzheimer's disease.  Subcell Biochem. 2005;  38 273-298
  • 31 Braskie M N, Jahanshad N, Stein J L et al.. Common Alzheimer's disease risk variant within the CLU gene affects white matter microstructure in young adults.  J Neurosci. 2011;  31 (18) 6764-6770
  • 32 Krych-Goldberg M, Atkinson J P. Structure-function relationships of complement receptor type 1.  Immunol Rev. 2001;  180 112-122
  • 33 Zanjani H, Finch C E, Kemper C et al.. Complement activation in very early Alzheimer disease.  Alzheimer Dis Assoc Disord. 2005;  19 (2) 55-66
  • 34 Eikelenboom P, Veerhuis R, Scheper W, Rozemuller A J, van Gool W A, Hoozemans J J. The significance of neuroinflammation in understanding Alzheimer's disease.  J Neural Transm. 2006;  113 (11) 1685-1695
  • 35 Rogers J, Li R, Mastroeni D et al.. Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes.  Neurobiol Aging. 2006;  27 (12) 1733-1739
  • 36 Brouwers N, Van Cauwenberghe C, Engelborghs S et al.. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites.  Mol Psychiatry. 2011;  ; March 15 [Epub ahead of print]
  • 37 Tebar F, Bohlander S K, Sorkin A. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic.  Mol Biol Cell. 1999;  10 (8) 2687-2702
  • 38 Koo E H, Squazzo S L. Evidence that production and release of amyloid beta-protein involves the endocytic pathway.  J Biol Chem. 1994;  269 (26) 17386-17389
  • 39 Carey R M, Balcz B A, Lopez-Coviella I, Slack B E. Inhibition of dynamin-dependent endocytosis increases shedding of the amyloid precursor protein ectodomain and reduces generation of amyloid beta protein.  BMC Cell Biol. 2005;  6 30
  • 40 Harel A, Wu F, Mattson M P, Morris C M, Yao P J. Evidence for CALM in directing VAMP2 trafficking.  Traffic. 2008;  9 (3) 417-429
  • 41 Sakamuro D, Elliott K J, Wechsler-Reya R, Prendergast G C. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor.  Nat Genet. 1996;  14 (1) 69-77
  • 42 Wigge P, McMahon H T. The amphiphysin family of proteins and their role in endocytosis at the synapse.  Trends Neurosci. 1998;  21 (8) 339-344
  • 43 Meunier B, Quaranta M, Daviet L, Hatzoglou A, Leprince C. The membrane-tubulating potential of amphiphysin 2/BIN1 is dependent on the microtubule-binding cytoplasmic linker protein 170 (CLIP-170).  Eur J Cell Biol. 2009;  88 (2) 91-102
  • 44 Tanaka N, Abe-Dohmae S, Iwamoto N, Yokoyama S. Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system.  J Atheroscler Thromb. 2011;  18 (4) 274-281
  • 45 Ikeda Y, Abe-Dohmae S, Munehira Y et al.. Posttranscriptional regulation of human ABCA7 and its function for the apoA-I-dependent lipid release.  Biochem Biophys Res Commun. 2003;  311 (2) 313-318
  • 46 Langmann T, Mauerer R, Zahn A et al.. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues.  Clin Chem. 2003;  49 (2) 230-238
  • 47 Jehle A W, Gardai S J, Li S et al.. ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages.  J Cell Biol. 2006;  174 (4) 547-556
  • 48 Liang Y, Buckley T R, Tu L, Langdon S D, Tedder T F. Structural organization of the human MS4A gene cluster on chromosome 11q12.  Immunogenetics. 2001;  53 (5) 357-368
  • 49 Tateno H, Li H, Schur M J et al.. Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity.  Mol Cell Biol. 2007;  27 (16) 5699-5710
  • 50 Crocker P R, Paulson J C, Varki A. Siglecs and their roles in the immune system.  Nat Rev Immunol. 2007;  7 (4) 255-266
  • 51 Dustin M L, Olszowy M W, Holdorf A D et al.. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts.  Cell. 1998;  94 (5) 667-677
  • 52 Lynch D K, Winata S C, Lyons R J et al.. A cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton.  J Biol Chem. 2003;  278 (24) 21805-21813
  • 53 Pimplikar S W, Nixon R A, Robakis N K, Shen J, Tsai L H. Amyloid-independent mechanisms in Alzheimer's disease pathogenesis.  J Neurosci. 2010;  30 (45) 14946-14954
  • 54 McGeer E G, McGeer P L. Innate immunity in Alzheimer's disease: a model for local inflammatory reactions.  Mol Interv. 2001;  1 (1) 22-29
  • 55 Bates K A, Verdile G, Li Q X et al.. Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic design and diagnostic tests.  Mol Psychiatry. 2009;  14 (5) 469-486
  • 56 Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B. How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes.  Aging Cell. 2004;  3 (4) 169-176
  • 57 Rowe J A, Moulds J M, Newbold C I, Miller LHP. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1.  Nature. 1997;  388 (6639) 292-295
  • 58 Dietschy J M, Turley S D. Cholesterol metabolism in the brain.  Curr Opin Lipidol. 2001;  12 (2) 105-112
  • 59 Puglielli L, Tanzi R E, Kovacs D M. Alzheimer's disease: the cholesterol connection.  Nat Neurosci. 2003;  6 (4) 345-351
  • 60 Miwa Y, Takiuchi S, Kamide K et al.. Insertion/deletion polymorphism in clusterin gene influences serum lipid levels and carotid intima-media thickness in hypertensive Japanese females.  Biochem Biophys Res Commun. 2005;  331 (4) 1587-1593
  • 61 Ishikawa Y, Akasaka Y, Ishii T et al.. Distribution and synthesis of apolipoprotein J in the atherosclerotic aorta.  Arterioscler Thromb Vasc Biol. 1998;  18 (4) 665-672
  • 62 Tanaka N, Abe-Dohmae S, Iwamoto N, Yokoyama S. Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system.  J Atheroscler Thromb. 2011;  18 (4) 274-281
  • 63 Mack J T, Townsend D M, Beljanski V, Tew K D. The ABCA2 transporter: intracellular roles in trafficking and metabolism of LDL-derived cholesterol and sterol-related compounds.  Curr Drug Metab. 2007;  8 (1) 47-57
  • 64 Brody D L, Magnoni S, Schwetye K E et al.. Amyloid-beta dynamics correlate with neurological status in the injured human brain.  Science. 2008;  321 (5893) 1221-1224
  • 65 Shankar G M, Li S, Mehta T H et al.. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory.  Nat Med. 2008;  14 (8) 837-842
  • 66 Selkoe D J. Alzheimer's disease.  Cold Spring Harb Perspect Biol. 2011;  3 (7) pii: a004457
  • 67 Bartl M M, Luckenbach T, Bergner O, Ullrich O, Koch-Brandt C. Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes.  Exp Cell Res. 2001;  271 (1) 130-141
  • 68 Bell R D, Sagare A P, Friedman A E et al.. Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system.  J Cereb Blood Flow Metab. 2007;  27 (5) 909-918
  • 69 Stevens B, Allen N J, Vazquez L E et al.. The classical complement cascade mediates CNS synapse elimination.  Cell. 2007;  131 (6) 1164-1178
  • 70 Rademakers R, Rovelet-Lecrux A. Recent insights into the molecular genetics of dementia.  Trends Neurosci. 2009;  32 (8) 451-461
  • 71 Rohrer J D, Guerreiro R, Vandrovcova J et al.. The heritability and genetics of frontotemporal lobar degeneration.  Neurology. 2009;  73 (18) 1451-1456
  • 72 van der Zee J, Sleegers K, Van Broeckhoven C. Invited article: the Alzheimer disease-frontotemporal lobar degeneration spectrum.  Neurology. 2008;  71 (15) 1191-1197
  • 73 Renton A E, Majounie E, Waite A et al.. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.  Neuron. 2011;  72 (2) 257-268
  • 74 DeJesus-Hernandez M, Mackenzie I R, Boeve B F et al.. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.  Neuron. 2011;  72 (2) 245-256
  • 75 Ballatore C, Lee V M, Trojanowski J Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders.  Nat Rev Neurosci. 2007;  8 (9) 663-672
  • 76 Chen-Plotkin A S, Lee V M, Trojanowski J Q. TAR DNA-binding protein 43 in neurodegenerative disease.  Nat Rev Neurol. 2010;  6 (4) 211-220
  • 77 Mackenzie I R, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.  Lancet Neurol. 2010;  9 (10) 995-1007
  • 78 Urwin H, Josephs K A, Rohrer J D FReJA Consortium et al. FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration.  Acta Neuropathol. 2010;  120 (1) 33-41
  • 79 Coppola G, Karydas A, Rademakers R et al.. Gene expression study on peripheral blood identifies progranulin mutations.  Ann Neurol. 2008;  64 (1) 92-96
  • 80 Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration.  Neurology. 2008;  71 (16) 1235-1239
  • 81 Sleegers K, Brouwers N, Van Damme P et al.. Serum biomarker for progranulin-associated frontotemporal lobar degeneration.  Ann Neurol. 2009;  65 (5) 603-609
  • 82 Geser F, Martinez-Lage M, Robinson J et al.. Clinical and pathological continuum of multisystem TDP-43 proteinopathies.  Arch Neurol. 2009;  66 (2) 180-189
  • 83 Barmada S J, Skibinski G, Korb E, Rao E J, Wu J Y, Finkbeiner S. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis.  J Neurosci. 2010;  30 (2) 639-649
  • 84 Weihl C C. Valosin containing protein associated fronto-temporal lobar degeneration: clinical presentation, pathologic features and pathogenesis.  Curr Alzheimer Res. 2011;  8 (3) 252-260
  • 85 Urwin H, Ghazi-Noori S, Collinge J, Isaacs A. The role of CHMP2B in frontotemporal dementia.  Biochem Soc Trans. 2009;  37 (Pt 1) 208-212
  • 86 Lee J A, Liu L, Gao F B. Autophagy defects contribute to neurodegeneration induced by dysfunctional ESCRT-III.  Autophagy. 2009;  5 (7) 1070-1072
  • 87 Deng H X, Chen W, Hong S T et al.. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia.  Nature. 2011;  477 (7363) 211-215
  • 88 Van Deerlin V M, Sleiman P M, Martinez-Lage M et al.. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions.  Nat Genet. 2010;  42 (3) 234-239
  • 89 Finch N, Carrasquillo M M, Baker M et al.. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers.  Neurology. 2011;  76 (5) 467-474
  • 90 Bonifati V. Recent advances in the genetics of dementia with Lewy bodies.  Curr Neurol Neurosci Rep. 2008;  8 (3) 187-189
  • 91 Clark L N, Kartsaklis L A, Wolf Gilbert R et al.. Association of glucocerebrosidase mutations with dementia with Lewy bodies.  Arch Neurol. 2009;  66 (5) 578-583
  • 92 Brown K, Mastrianni J A. The prion diseases.  J Geriatr Psychiatry Neurol. 2010;  23 (4) 277-298
  • 93 Mead S, Poulter M, Uphill J et al.. Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association study.  Lancet Neurol. 2009;  8 (1) 57-66
  • 94 Angot E, Steiner J A, Hansen C, Li J Y, Brundin P. Are synucleinopathies prion-like disorders?.  Lancet Neurol. 2010;  9 (11) 1128-1138
  • 95 Kim J, Holtzman D M. Medicine. Prion-like behavior of amyloid-beta.  Science. 2010;  330 (6006) 918-919
  • 96 Frost B, Diamond M I. Prion-like mechanisms in neurodegenerative diseases.  Nat Rev Neurosci. 2010;  11 (3) 155-159
  • 97 Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M G. CADASIL.  Lancet Neurol. 2009;  8 (7) 643-653
  • 98 Ross C A, Tabrizi S J. Huntington's disease: from molecular pathogenesis to clinical treatment.  Lancet Neurol. 2011;  10 (1) 83-98
  • 99 Wild E J, Mudanohwo E E, Sweeney M G et al.. Huntington's disease phenocopies are clinically and genetically heterogeneous.  Mov Disord. 2008;  23 (5) 716-720
  • 100 Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4).  Cerebellum. 2008;  7 (2) 170-178
  • 101 Garcia-Arocena D, Hagerman P J. Advances in understanding the molecular basis of FXTAS.  Hum Mol Genet. 2010;  19 (R1) R83-R89
  • 102 Leehey M A. Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment.  J Investig Med. 2009;  57 (8) 830-836

Henry L. PaulsonM.D. Ph.D. 

Professor of Neurology, Department of Neurology, University of Michigan

4001 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109

Email: henryp@umich.edu