Subscribe to RSS
DOI: 10.1055/s-0032-1315129
Percent Mammographic Density and Dense Area as Risk Factors for Breast Cancer
Prozentuale mammografische Dichte und die dichte Fläche in der Mammografie als Risikofaktoren für das MammakarzinomPublication History
received 21 June 2012
revised 28 June 2012
accepted 29 June 2012
Publication Date:
28 August 2012 (online)
Abstract
Purpose: Mammographic characteristics are known to be correlated to breast cancer risk. Percent mammographic density (PMD), as assessed by computer-assisted methods, is an established risk factor for breast cancer. Along with this assessment the absolute dense area (DA) of the breast is reported as well. Aim of this study was to assess the predictive value of DA concerning breast cancer risk in addition to other risk factors and in addition to PMD. Methods: We conducted a case control study with hospital-based patients with a diagnosis of invasive breast cancer and healthy women as controls. A total of 561 patients and 376 controls with available mammographic density were included into this study. We describe the differences concerning the common risk factors BMI, parital status, use of hormone replacement therapy (HRT) and menopause between cases and controls and estimate the odds ratios for PMD and DA, adjusted for the mentioned risk factors. Furthermore we compare the prediction models with each other to find out whether the addition of DA improves the model. Results: Mammographic density and DA were highly correlated with each other. Both variables were as well correlated to the commonly known risk factors with an expected direction and strength, however PMD (ρ = −0.56) was stronger correlated to BMI than DA (ρ = −0.11). The group of women within the highest quartil of PMD had an OR of 2.12 (95 % CI: 1.25–3.62). This could not be seen for the fourth quartile concerning DA. However the assessment of breast cancer risk could be improved by including DA in a prediction model in addition to common risk factors and PMD. Conclusions: The inclusion of the parameter DA into a prediction model for breast cancer in addition to established risk factors and PMD could improve the breast cancer risk assessment. As DA is measured together with PMD in the process of computer-assisted assessment of PMD it might be considered to include it as one additional breast cancer risk factor that is obtained from breast imaging.
Zusammenfassung
Ziel: Das Erscheinungsbild der Brustdrüse in der Mammografie konnte mit dem Brustkrebsrisiko in Zusammenhang gebracht werden. Die prozentuale mammografische Dichte (PMD) ist ein etablierter Risikofaktor für das Mammakarzinom. Bei der computergestützten Bestimmung der PMD wird gleichzeitig die Fläche der dichten Anteile (DA) berechnet. Ziel dieser Studie ist es festzustellen, ob durch die Hinzunahme der DA die Prädiktion des Brustkrebsrisikos verbessert werden kann. Methoden: Wir führten eine Fallkontrollstudie durch, die krankenhausbasierte Brustkrebspatientinnen als Fälle und gesunde Individuen als Kontrollen rekrutiert hat. Insgesamt 561 Patientinnen und 376 Kontrollindividuen mit einer mammografischen Dichte wurden in diese Untersuchung eingeschlossen. Die Unterschiede zwischen Fällen und Kontrollen in Bezug auf allgemeine Brustkrebsrisikofaktoren werden beschrieben und die adjustierten Odds Ratios (OR) für die PMD und die DA in Bezug auf das Brustkrebsrisiko berechnet. Außerdem werden die verschiedenen Prädiktionsmodelle in Bezug auf ihre Stärke, den Fallkontrollstatus vorherzusagen, verglichen. Ergebnisse: PMD und DA waren hochgradig miteinander korreliert. Beide Variablen waren auch mit den üblichen Risikofaktoren wie dem Alter, dem BMI, der Parität, und der Benutzung von Hormonersatztherapie (HRT) assoziiert. PMD (ρ = −0.56) war deutlicher mit dem BMI assoziiert als die DA (ρ = −0.11). Die Gruppe von Frauen in der höchsten Quartile der PMD hatten eine OR von 2,12 (95 %-KI: 1,25–3,62) verglichen mit Frauen in der niedrigsten Quartile. Dies konnte nicht für die DA gezeigt werden. Jedoch bei der Bildung eines Prädiktionsmodells für den Fallkontrollstatus hatte das Modell, welches die Risikofaktoren, die PMD und die DA einschloss, die beste Vorhersagekraft. Schlussfolgerung: Die Fläche der dichten Anteile der Brust bei einer Mammografie (DA) kann die Bestimmung des Brustkrebsrisikos verbessern, wenn sie zusammen mit üblichen Risikofaktoren und der prozentualen mammografischen Dichte (PMD) benutzt wird. Da die DA bei computergestützten Messungen der mammografischen Dichte ohnehin bestimmt wird, sollte überlegt werden, ob dieser Faktor nicht generell bei der Risikobestimmung integriert werden sollte.
-
References
- 1 Fasching PA, Ekici AB, Adamietz B et al. Breast cancer risk – genes, enviroment, and clinical practice. Geburtsh Frauenheilk 2011; 71: 1056-1066
- 2 Mavaddat N, Antoniou AC, Easton DF et al. Genetic susceptibility to breast cancer. Mol Oncol 2010; 4: 174-191
- 3 Spiegelman D, Colditz GA, Hunter D et al. Validation of the Gail et al. model for predicting individual breast cancer risk. J Natl Cancer Inst 1994; 86: 600-607
- 4 McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15: 1159-1169
- 5 Kolberg H-C, Lüftner D, Lux MP et al. Breast cancer 2012 – new aspects. Geburtsh Frauenheilk 2012; 72: 602-615
- 6 Cuzick J, Dowsett M, Pineda S et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol 2011; 29: 4273-4278
- 7 Boyd NF, Melnichouk O, Martin LJ et al. Mammographic density, response to hormones, and breast cancer risk. J Clin Oncol 2011; 29: 2985-2992
- 8 Vachon CM, Scott CG, Fasching PA et al. Common breast cancer susceptibility variants in LSP1 and RAD51L1 are associated with mammographic density measures that predict breast cancer risk. Cancer Epidemiol Biomarkers Prev 2012;
- 9 Martin LJ, Melnichouk O, Guo H et al. Family history, mammographic density, and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2010; 19: 456-463
- 10 Kast K, Distler W, Schmutzler R. Current recommendations for the prevention and treatment of hereditary breast cancer. Geburtsh Frauenheilk 2010; 70: 634-639
- 11 Wolfe JN, Saftlas AF, Salane M. Mammographic parenchymal patterns and quantitative evaluation of mammographic densities: a case-control study. AJR Am J Roentgenol 1987; 148: 1087-1092
- 12 Wolfe JN. Breast patterns as an index of risk for developing breast cancer. AJR Am J Roentgenol 1976; 126: 1130-1137
- 13 Boyd NF, Byng JW, Jong RA et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 1995; 87: 670-675
- 14 Gao J, Warren R, Warren-Forward H et al. Reproducibility of visual assessment on mammographic density. Breast Cancer Res Treat 2008; 108: 121-127
- 15 Boyd NF, Martin LJ, Yaffe M et al. Mammographic density. Breast Cancer Res 2009; 11 (Suppl. 03) S4
- 16 Byng JW, Boyd NF, Fishell E et al. The quantitative analysis of mammographic densities. Phys Med Biol 1994; 39: 1629-1638
- 17 Ursin G, Astrahan MA, Salane M et al. The detection of changes in mammographic densities. Cancer Epidemiol Biomarkers Prev 1998; 7: 43-47
- 18 Haeberle L, Wagner F, Fasching PA et al. Characterizing mammographic images using generic texture features. Breast Cancer Res 2012; 14: R59
- 19 Manduca A, Carston MJ, Heine JJ et al. Texture features from mammographic images and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2009; 18: 837-845
- 20 Heine JJ, Cao K, Beam C. Cumulative sum quality control for calibrated breast density measurements. Med Phys 2009; 36: 5380-5390
- 21 Stone J, Warren RM, Pinney E et al. Determinants of percentage and area measures of mammographic density. Am J Epidemiol 2009; 170: 1571-1578
- 22 Schulz-Wendtland R, Dilbat G, Bani M et al. Full field digital mammography (FFDM) versus CMOS technology versus tomosynthesis (DBT) – which system increases the quality of intraoperative imaging?. Geburtsh Frauenheilk 2012; 72: 532-538
- 23 Fasching PA, Loehberg CR, Strissel PL et al. Single nucleotide polymorphisms of the aromatase gene (CYP19A1), HER2/neu status, and prognosis in breast cancer patients. Breast Cancer Res Treat 2008; 112: 89-98
- 24 Heusinger K, Loehberg CR, Haeberle L et al. Mammographic density as a risk factor for breast cancer in a German case-control study. Eur J Cancer Prev 2011; 20: 1-8
- 25 Fasching PA, Pharoah PD, Cox A et al. The role of genetic breast cancer susceptibility variants as prognostic factors. Hum Mol Genet 2012;
- 26 Lambrechts D, Truong T, Justenhoven C et al. 11q13 is a susceptibility locus for hormone receptor positive breast cancer. Hum Mutat 2012;
- 27 Schrauder M, Frank S, Strissel PL et al. Single nucleotide polymorphism D1853 N of the ATM gene may alter the risk for breast cancer. J Cancer Res Clin Oncol 2008; 134: 873-882
- 28 Azzato EM, Tyrer J, Fasching PA et al. Association between a germline OCA2 polymorphism at chromosome 15q13.1 and estrogen receptor-negative breast cancer survival. J Natl Cancer Inst 2010; 102: 650-662
- 29 Milne RL, Benitez J, Nevanlinna H et al. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst 2009; 101: 1012-1018
- 30 Yang XR, Chang-Claude J, Goode EL et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 2011; 103: 250-263
- 31 Antoniou AC, Wang X, Fredericksen ZS et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 2010; 42: 885-892
- 32 Ghoussaini M, Fletcher O, Michailidou K et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 2012; 44: 312-318
- 33 Haiman CA, Chen GK, Vachon CM et al. A common variant at the TERT-CLPTM1 L locus is associated with estrogen receptor-negative breast cancer. Nat Genet 2011; 43: 1210-1214
- 34 Vachon CM, Brandt KR, Ghosh K et al. Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomarkers Prev 2007; 16: 43-49
- 35 Boyd NF, Martin LJ, Sun L et al. Body size, mammographic density, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15: 2086-2092
- 36 Loehberg CR, Heusinger K, Jud SM et al. Assessment of mammographic density before and after first full-term pregnancy. Eur J Cancer Prev 2010; 19: 405-412
- 37 Boyd NF, Martin LJ, Yaffe MJ et al. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res 2011; 13: 223
- 38 Schulz-Wendtland R, Bani M, Lux MP et al. Pilot study on the detection of simulated lesions using a 2D and 3D digital full-field mammography system with a newly developed high resolution detector based on two shifts of a-Se. Geburtsh Frauenheilk 2012; 72: 408-411
- 39 Stone J, Ding J, Warren RM et al. Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res 2010; 12: R97
- 40 Maskarinec G, Meng L. A case-control study of mammographic densities in Hawaii. Breast Cancer Res Treat 2000; 63: 153-161
- 41 Ursin G, Ma H, Wu AH et al. Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomarkers Prev 2003; 12: 332-338
- 42 Nagata C, Matsubara T, Fujita H et al. Mammographic density and the risk of breast cancer in Japanese women. Br J Cancer 2005; 92: 2102-2106
- 43 Torres-Mejia G, De Stavola B, Allen DS et al. Mammographic features and subsequent risk of breast cancer: a comparison of qualitative and quantitative evaluations in the Guernsey prospective studies. Cancer Epidemiol Biomarkers Prev 2005; 14: 1052-1059
- 44 Fasching PA, von Minckwitz G, Fischer T et al. The impact of breast cancer awareness and socioeconomic status on willingness to receive breast cancer prevention drugs. Breast Cancer Res Treat 2007; 101: 95-104
- 45 Loehberg CR, Jud SM, Haeberle L et al. Breast cancer risk assessment in a mammography screening program and participation in the IBIS-II chemoprevention trial. Breast Cancer Res Treatment 2010; 121: 101-110
- 46 Boyd N, Martin L, Chavez S et al. Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol 2009; 10: 569-580