Synlett 2012; 23(20): 2975-2979
DOI: 10.1055/s-0032-1317508
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Bisindolylmethanes from Benzyl Alcohols and Indoles Using Catalytic Iodine and Molecular Oxygen under Visible Light Irradiation

Tomoya Nobuta
Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Akitoshi Fujiya
Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Norihiro Tada
Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tsuyoshi Miura
Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Akichika Itoh*
Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 05 September 2012

Accepted: 28 September 2012

Publication Date:
23 November 2012 (online)


Abstract

Bisindolylmethanes can be directly synthesized from benzyl alcohol and indole in up to 86% yield using molecular oxygen, visible light, and catalytic iodine, which serves as both an oxidant and a Lewis acid.

 
  • References and Notes

  • 1 Sundberg RJ. The Chemistry of Indoles . Academic Press; New York: 1970
  • 4 Ramachandiran K, Muralidharan D, Perumal PT. Tetrahedron Lett. 2011; 52: 3579
  • 5 Yang J, Wang Z, Pan F, Li Y, Bao W. Org. Biomol. Chem. 2010; 8: 2975
  • 6 Guo X, Pan S, Liu J, Li Z. J. Org. Chem. 2009; 74: 8848
  • 9 Togo H, Iida S. Synlett 2006; 2159
  • 10 Gao M, Yang Y, Wu Y.-D, Deng C, Shu W.-M, Zhang D.-X, Cao L.-P, She N.-F, Wu A.-X. Org. Lett. 2010; 12: 4026
  • 11 General Procedure: A solution of 4-tert-butylbenzyl alcohol (1a; 0.3 mmol) and I2 (0.06 mmol) in anhyd EtOAc (5 mL) in a pyrex test tube, purged with an O2 balloon, was stirred and irradiated externally with four 22-W fluorescent lamps for 20 h. Indole (0.66 mmol) was added, and stirred for 10 min at r.t. The reaction mixture was washed with aq Na2S2O3 and concentrated in vacuo. Purification of the crude product by PTLC (hexane–EtOAc, 4:1) provided 3,3′-bis-(indolyl)-4-tert-butylphenylmethane (3aa; Rf 0.33; yield: 98.1 mg, 86%). 3,3′-Bis(indolyl)-4-tert-butylphenylmethane (3aa): 1H NMR (400 MHz, CDCl3): δ = 7.54 (br s, 2 H), 7.36 (d, J = 7.7 Hz, 2 H), 7.26–7.09 (m, 8 H), 6.98–6.94 (m, 2 H), 6.47 (s, 2 H), 5.80 (s, 1 H), 1.27 (s, 9 H). 3,3′-Bis(indolyl)phenylmethane (3ba): 1H NMR (400 MHz, CDCl3): δ = 7.44 (br s, 2 H), 7.34–7.08 (m, 11 H), 6.95 (t, J = 7.3 Hz, 2 H), 6.39 (s, 2 H), 5.80 (s, 1 H). 3,3′-Bis(indolyl)-4-methylphenylmethane (3ca): 1H NMR (400 MHz, CDCl3): δ = 7.41 (br s, 2 H), 7.34 (d, J = 8.2 Hz, 2 H), 7.17–7.05 (m, 6 H), 7.02 (d, J = 7.7 Hz, 2 H), 6.95 (t, J = 7.2 Hz, 2 H), 6.40 (s, 2 H), 5.78 (s, 1 H), 2.27 (s, 3 H). 3,3′-Bis(indolyl)-4-bromophenylmethane (3da): 1H NMR (400 MHz, CDCl3): δ = 7.50 (br s, 2 H), 7.24–7.02 (m, 10 H), 6.89 (m, 2 H), 6.34 (s, 2 H), 5.68 (s, 1 H). 3,3′-Bis(indolyl)-2-naphthylmethane (3ea): 1H NMR (500 MHz, DMSO-d 6): δ = 10.90 (br s, 2 H), 7.85–7.73 (m, 4 H), 7.57 (d, J = 8.6 Hz, 1 H), 7.40–7.35 (m, 6 H), 7.04 (t, J = 7.4 Hz, 2 H), 6.91–6.84 (m, 4 H), 6.05 (s, 1 H). 3,3′-Bis(indolyl)-4-chlorophenylmethane (3fa): 1H NMR (500 MHz, DMSO-d 6): δ = 10.87 (br s, 2 H), 7.36–6.83 (m, 14 H), 5.85 (s, 1 H). 3,3′-Bis(indolyl)-4-methoxyphenylmethane (3ga): 1H NMR (500 MHz, CDCl3): δ = 7.58 (br s, 2 H), 7.35–7.34 (m, 2 H), 7.21–7.09 (m, 6 H), 6.96 (t, J = 7.4 Hz, 2 H), 6.75 (d, J = 8.0 Hz, 2 H), 6.44 (s, 2 H), 5.77 (s, 1 H), 3.70 (s, 3 H). 3,3′-Bis(indolyl)-4-nitrophenylmethane (3ha): 1H NMR (500 MHz, DMSO-d 6): δ = 10.92 (br s, 2 H), 8.12 (d, J = 8.6 Hz, 2 H), 7.58 (d, J = 8.6 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 2 H), 7.26 (d, J = 8.0 Hz, 2 H), 7.04–7.01 (m, 2 H), 6.88–6.84 (m, 4 H), 6.00 (s, 1 H). 2,2′-Bis[3-(carboxypropyl)indolyl]-4-methoxyphenylmethane (3gb): 1H NMR (400 MHz, DMSO-d 6): δ = 12.00 (br s, 2 H), 10.43 (br s, 2 H), 7.48 (d, J = 7.3 Hz, 2 H), 7.30 (d, J = 7.8 Hz, 2 H), 7.04–6.93 (m, 6 H), 6.87 (d, J = 8.7 Hz, 2 H), 5.97 (s, 1 H), 3.70 (s, 3 H), 2.72–2.69 (m, 4 H), 2.21 (t, J = 7.3 Hz, 4 H), 1.72–1.69 (m, 4 H). 2,2′-Bis[3-(carboxyethyl)indolyl]-4-nitrophenylmethane (3hc): 1H NMR (500 MHz, DMSO-d 6): δ = 12.09 (br s, 2 H), 10.78 (br s, 2 H), 8.20 (d, J = 8.6 Hz, 2 H), 7.50 (d, J = 7.4 Hz, 2 H), 7.35 (d, J = 8.6 Hz, 2 H), 7.31 (d, J = 8.0 Hz, 2 H), 7.04 (t, J = 7.4 Hz, 2 H), 6.98–6.95 (m, 2 H), 6.40 (s, 1 H), 3.01–2.88 (m, 4 H), 2.46–2.40 (m, 4 H).Bis(1-methylindol-3-yl)-4-tolylmethane (3cd): 1H NMR (500 MHz, CDCl3): δ = 7.37 (d, J = 8.0 Hz, 2 H), 7.24–7.14 (m, 6 H), 7.05 (d, J = 7.5 Hz, 2 H), 6.97–6.94 (m, 2 H), 6.50 (s, 2 H), 5.83 (s, 1 H), 3.58 (s, 6 H), 2.29 (s, 3 H).�5-(4-Methylphenyl)dipyrromethane (3ce): 1H NMR (500 MHz, CDCl3): δ = 7.91 (br s, 2 H), 7.13–7.09 (m, 4 H), 6.68–6.67 (m, 2 H), 6.16–6.14 (m, 2 H), 5.91 (s, 2 H), 5.43 (s, 1 H), 2.33 (s, 3 H).�