Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(12): 1745-1750
DOI: 10.1055/s-0033-1338649
DOI: 10.1055/s-0033-1338649
letter
Trapping of Carboxylic Oxonium Ylides with N-Boc Imines for the Facile Synthesis of β-Amino Alcohol Derivatives
Further Information
Publication History
Received: 26 March 2014
Accepted after revision: 25 April 2014
Publication Date:
05 June 2014 (online)
Abstract
A Rh2(OAc)4-catalyzed three-component reaction of carboxylic acids, α-diazoacetophenones, and N-Boc imines has been developed to efficiently produce β-amino alcohol derivatives. Oxonium ylides generated from carboxylic acids and metal carbenoids have been intercepted by electrophiles for the first time.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/ 10.1055/s-00000083.
- Supporting Information
-
References and Notes
- 1a Zhu J, Bienaymé H. Multicomponent Reactions . Wiley-VCH; Weinheim: 2005
- 1b Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 1c Nair V, Rajesh C, Vinod AU, Bindu S, Sreekenth AR, Mathen JS, Balagopal L. Acc. Chem. Res. 2003; 36: 899
- 1d Zhu J. Eur. J. Org. Chem. 2003; 7: 1133
- 1e Orru RV. A, Greef MD. Synthesis 2003; 1471
- 1f Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
- 1g Dömling A. Chem. Rev. 2006; 106: 17
- 1h D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
- 1i Guillena GD, Ramón J, Yus M. Tetrahedron: Asymmetry 2007; 18: 693
- 1j Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
- 1k Wessjohann LA, Rivera DG, Vercillo OE. Chem. Rev. 2009; 109: 796
- 1l van der Heijden G, Ruijter E, Orru RV. A. Synlett 2013; 24: 666
- 2a Passerini M, Simone L. Gazz. Chim. Ital. 1921; 51: 126
- 2b Passerini M, Ragni G. Gazz. Chim. Ital. 1931; 61: 964
- 2c Denmark SE, Fan Y. J. Org. Chem. 2005; 70: 9667
- 3a Ugi I, Meyr R, Fetzer U, Steinbrückner C. Angew. Chem. 1959; 71: 386
- 3b Ugi I. Angew. Chem., Int. Ed. Engl. 1962; 1: 8
- 3c Pan SC, List B. Angew. Chem. Int. Ed. 2008; 47: 3622
- 3d Xia L, Li S, Chen R, Liu K, Chen X. J. Org. Chem. 2013; 78: 3120
- 4a Doyle MP. Chem. Rev. 1986; 86: 919
- 4b Padwa A, Hornbuckle SF. Chem. Rev. 1991; 91: 263
- 4c Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
- 4d Doyle MP, McKerver MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds. Wiley; New York: 1998
- 4e Davies HM. L, Manning JR. Nature 2008; 451: 417
- 4f Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
- 5a Ye T, Mckervey MA. Chem. Rev. 1994; 94: 1091
- 5b Li A, Dai L. Chem. Rev. 1997; 97: 2341
- 5c Sun X, Tang Y. Acc. Chem. Res. 2008; 41: 937
- 5d Zhang Z.-H, Wang JB. Tetrahedron 2008; 64: 6577
- 6a Xing D, Hu W. Tetrahedron Lett. 2014; 55: 777
- 6b Doyle MP, Shanklin MS, Pho HQ, Mahapatro SN. J. Org. Chem. 1988; 53: 1017
- 6c Muthusamy S, Gunanathan C, Babu SA, Suresh E, Dastidar P. Chem. Commun. 2002; 8: 824
- 6d Davies HM. L, Hedley SJ. Chem. Soc. Rev. 2007; 36: 1109
- 6e Lian Y, Davies HM. L. J. Am. Chem. Soc. 2010; 132: 440
- 7a Wang Y, Zhu Y, Chen Z, Mi A, Hu W, Doyle MP. Org. Lett. 2003; 5: 3923
- 7b Zhu Y, Zhai C, Yue Y, Yang L, Hu W. Chem. Commun. 2009; 11: 1362
- 7c Jiang J, Xu H, Xi J, Ren B, Lv F, Guo X, Jiang L, Zhang Z, Hu W. J. Am. Chem. Soc. 2011; 133: 8428
- 7d Jing C, Xing D, Qian Y, Shi T, Zhao Y, Hu W. Angew. Chem. Int. Ed. 2013; 52: 9289
- 7e Zhou C, Wang J, Wei J, Xu Z, Guo Z, Low K, Che C. Angew. Chem. Int. Ed. 2012; 51: 11376
- 7f Ren L, Lian X, Gong L. Chem. Eur. J. 2013; 19: 3315
- 8a Lu C, Liu H, Chen Z, Hu W, Mi A. Org. Lett. 2005; 7: 83
- 8b Hu W, Xu X, Zhou J, Liu W, Huang H, Hu J, Yang L, Gong L. J. Am. Chem. Soc. 2008; 130: 7782
- 8c Zhang X, Huang H, Guo X, Guan X, Yang L, Hu W. Angew. Chem. Int. Ed. 2008; 47: 6647
- 8d Alcaide B, Almendros P, Aragoncillo C, Callejo R, Ruiz MP, Torres MR. J. Org. Chem. 2009; 74: 8421
- 8e Guan X, Yang L, Hu W. Angew. Chem. Int. Ed. 2010; 49: 2190
- 8f Lakshmi NV, Sivakumar PM, Muralidharan D, Dobleb M, Perumal PT. RSC Adv. 2013; 3: 496
- 9a Qiu H, Li M, Jiang L, Lv F, Zan L, Zhai C, Doyle MP, Hu W. Nat. Chem. 2012; 4: 733
- 9b Xing D, Jing C, Li X, Qiu H, Hu W. Org. Lett. 2013; 15: 3578
- 9c Zhang D, Qiu H, Jiang L, Lv F, Ma C, Hu W. Angew. Chem. Int. Ed. 2013; 52: 13356
- 10a Seebach D. Angew. Chem. Int. Ed. Engl. 1979; 18: 239
- 10b Schumacher M, Goldfuss B. Tetrahedron 2008; 64: 1648
- 10c Shen B, Makley DM, Johnston JN. Nature 2010; 465: 1027
- 10d Lu B, Luo Y, Liu L, Ye L, Wang Y, Zhang L. Angew. Chem. Int. Ed. 2011; 50: 8358
- 10e Sparr C, Gilmour R. Angew. Chem. Int. Ed. 2011; 50: 8391
- 11a Wolfrom ML, Thompson A, Evans EF. J. Am. Chem. Soc. 1945; 67: 1793
- 11b Erickson JL. E, Dechary JM, Kesling MR. J. Am. Chem. Soc. 1951; 73: 5301
- 11c Sumner T, Ball LE, Platner J. J. Org. Chem. 1959; 24: 2017
- 11d Shinada T, Kawakami T, Sakai H, Takada I, Ohfune Y. Tetrahedron Lett. 1998; 39: 3757
- 11e Jiang N, Wang J, Chan AS. C. Tetrahedron Lett. 2001; 42: 8511
- 11f Bertelsen S, Nielsen M, Bachmann S, Jørgensen KA. Synthesis 2005; 2234
- 11g Vorob’eva DV, Titanyuk ID, Beletskayab IP, Osipov SN. Mendeleev Commun. 2005; 15: 222
- 12a Bergmeire SC. Tetrahedron 2000; 56: 2561
- 12b Reetz M. Chem. Rev. 1999; 99: 1121
- 12c Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
- 12d Kolb HC, Sharpless KB In Transition Metals for Organic Synthesis . Beller M, Bolm C. Wiley-VCH; Weinheim: 1998: 243
- 12e Handa S, Gnanadesikan V, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2007; 129: 4900
- 12f Kumagai N, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2004; 126: 13632
- 12g Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 12h Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2007; 129: 10054
- 12i Hashimoto T, Hirose M, Maruoka K. J. Am. Chem. Soc. 2008; 130: 7556
- 12j Taichi K, Yukako Y, Maruoka K. Angew. Chem. Int. Ed. 2009; 48: 1838
- 12k Hatano M, Horibe T, Ishihara K. J. Am. Chem. Soc. 2010; 132: 56
- 13 1-(tert-Butoxycarbonylamino)-3-oxo-3-phenyl-1-p-tolylpropan-2-yl benzoate (4a) anti- 4a: 1H NMR (CDCl3, 400 MHz): δ = 8.06–7.99 (m, 4 H), 7.62–7.56 (m, 2 H), 7.49–7.42 (m, 4 H), 7.30 (d, J = 8.0 Hz, 2 H), 7.14 (d, J = 8.0 Hz, 2 H), 6.36 (d, J = 3.0 Hz, 1 H), 5.46 (s, 2 H), 2.29 (s, 3 H), 1.35 (s, 9 H); 13C NMR (CDCl3, 100 MHz): δ = 194.0, 165.7, 154.9, 137.7, 135.6, 134.9, 133.8, 133.5, 129.9, 129.5, 129.1, 128.9, 128.5, 128.4, 126.5, 80.0, 77.7, 54.5, 28.2, 21.1; HRMS (ESI): m/z [M + Na]+ calcd for C28H29NNaO5: 482.1938; found: 482.1940. syn-4a: 1H NMR (CDCl3, 400 MHz): δ = 8.07 (d, J = 7.5 Hz, 2 H), 7.97–7.94 (m, 2 H), 7.60–7.53 (m, 2 H), 7.47–7.41 (m, 4 H), 7.13 (d, J = 8.0 Hz, 2 H), 7.07 (d, J = 8.0 Hz, 2 H), 6.57 (s, 1 H), 5.60 (d, J = 8.1 Hz, 1 H), 5.49 (s, 1 H), 2.27 (s, 3 H), 1.42 (s, 9 H); 13C NMR (CDCl3, 100 MHz): δ = 194.4, 165.8, 137.9, 135.3, 133.6, 133.4, 129.9, 129.2, 128.8, 128.7, 128.6, 128.5, 127.2, 80.0, 77.3, 76.5, 55.4, 28.3, 21.0; HRMS (ESI): m/z [M + Na]+ calcd for C28H29NNaO5: 482.1938; found: 482.1944.
- 14 Three-Component Reaction of Benzoic Acid with α-Diazoacetophenone and N-Boc Imine; General Procedure: Under an argon atmosphere, to a mixture of Rh2(OAc)4 (0.003 mmol), benzoic acid 1 (0.36 mmol), N-Boc imine 3 (0.30 mmol), and 4 Å MS (100 mg) in toluene (4.0 mL) stirred at 40 °C, was added α-diazoacetophenone 2 (0.36 mmol) in toluene (2.0 mL) by using a syringe pump over 1 h. Upon complete addition, the solvent was removed, and a portion of crude product was subjected to 1H NMR analysis to determine the diastereomeric ratio. The crude product was purified by column chromatography on silica gel to obtain the corresponding product 4.
- 15a Matsunaga S, Yoshida T, Morimoto H, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2004; 126: 8777
- 15b Kumagai N, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2004; 126: 13632
- 15c Kano T, Yamaguchi Y, Maruoka K. Angew. Chem. Int. Ed. 2009; 48: 1838
- 15d Kano T, Yamaguchi Y, Maruoka K. Chem. Eur. J. 2009; 15: 6678
- 16 We have filed a patent application for this three-component reaction, see: CN102391154, 2011.
Similar rate-accelerating effects for N-Boc imines bearing electron-donating substituents on the aryl rings have been observed, see: