Synlett 2013; 24(10): 1309-1310
DOI: 10.1055/s-0033-1338949
spotlight
© Georg Thieme Verlag Stuttgart · New York

Copper Ferrite (CuFe2O4) Nanoparticles

Reuben Hudson
McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada   eMail: reuben.hudson@mail.mcgill.ca
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. Mai 2013 (online)

Introduction

Ferrite (Fe3O4) nanoparticles (NPs) have been used as a catalyst for many organic transformations[1] because their nano-scale size equates to a large surface area to volume ratio (meaning many accessible active sites).[2] Moreover, iron-based magnetic properties enable easy catalyst recovery by the application of an external magnet. The catalytic scope of iron, however, pales in comparison with that of copper. Therefore, by substituting copper within the crystal lattice, the catalytic scope is greatly expanded, while the means of easy magnetic recovery are retained. The resulting copper ferrite nanoparticles (CuFe2O4 NPs) contain copper(II) and iron(III) species. Such nanoparticles can be obtained by co-precipitation of copper(II) and iron(III) salts (Scheme [1]).[3] They are also commercially available. Herein, the catalytic scope of CuFe2O4 NPs is highlighted and reviewed.

Zoom Image
Scheme 1 Synthesis of CuFe2O4 NPs by co-precipitation[3]