Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2014; 46(14): 1933-1937
DOI: 10.1055/s-0033-1339108
DOI: 10.1055/s-0033-1339108
special topic
Copper-Catalyzed Cross-Coupling of Aryl- and Heteroaryltriethoxysilanes with Aryl and Heteroaryl Iodides and Bromides
Further Information
Publication History
Received: 28 February 2014
Accepted after revision: 13 April 2014
Publication Date:
28 May 2014 (online)
Abstract
Copper(I)-catalyzed coupling of aryl- and heteroaryltriethoxysilanes with aryl and heteroaryl iodides is described. The transformation also proceeds with activated aryl bromides, but in this case it requires a stoichiometric amount of the catalyst for best product yields. The current reaction requires a P,N-based bidentate ligand for aryl–aryl coupling while it proceeds without external ligands for aryl–heteroaryl coupling to afford good product yields. The reaction protocol can also be applied to achieve biarylation of diiodoarenes in reasonable yields.
-
References
- 1a Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
- 1b Chang W.-TT, Smith RC, Regens CS, Bailey AD, Werner NS, Denmark SE. Org. React. 2011; 75: 213
- 2a Sore HF, Galloway WR. J. D, Spring DR. Chem. Soc. Rev. 2012; 41: 1845
- 2b Hiyama T. J. Organomet. Chem. 2002; 653: 58
- 2c Handy CJ, Manoso AS, McElroy WT, Seganish WM, DeShong P. Tetrahedron 2005; 61: 12201
- 2d Shukla KH, DeShong P. Heterocycles 2012; 86: 1055
- 3a Denmark SE, Liu JH. C. Angew. Chem. Int. Ed. 2010; 49: 2978
- 3b Denmark SE, Sweis RF. J. Am. Chem. Soc. 2001; 123: 6439
- 4a Zhou J, Fu GC. J. Am. Chem. Soc. 2004; 126: 1340
- 4b González-Bobes F, Fu GC. J. Am. Chem. Soc. 2006; 128: 5360
- 4c Saito B, Fu GC. J. Am. Chem. Soc. 2007; 129: 9602
- 4d Tobisu M, Shimasaki T, Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
- 4e Quasdorf KW, Tian X, Garg NK. J. Am. Chem. Soc. 2008; 130: 14422
- 4f Guan B.-T, Wang Y, Li B.-J, Yu D.-G, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
- 4g Antoft-Finch A, Blackburn T, Snieckus V. J. Am. Chem. Soc. 2009; 131: 17750
- 4h Quasdorf KW, Riener M, Petrova KV, Garg NK. J. Am. Chem. Soc. 2009; 131: 17748
- 4i Quasdorf KW, Antoft-Finch A, Liu P, Silberstein AL, Komaromi A, Blackburn T, Ramgren SD, Houk KN, Snieckus V, Garg NK. J. Am. Chem. Soc. 2011; 133: 6352
- 4j Lu Z, Wilsily A, Fu GC. J. Am. Chem. Soc. 2011; 133: 8154
- 4k Tobisu M, Xu T, Shimasaki T, Chatani N. J. Am. Chem. Soc. 2011; 133: 19505
- 4l Ge S, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 12837
- 4m Guo Y, Young DJ, Hor TS. A. Tetrahedron Lett. 2008; 49: 5620
- 4n Hatakeyama T, Hashimoto T, Kondo Y, Fujiwara Y, Seike H, Takaya H, Tamada Y, Ono T, Nakamura M. J. Am. Chem. Soc. 2010; 132: 10674
- 5a Powell DA, Fu GC. J. Am. Chem. Soc. 2004; 126: 7788
- 5b Strotman NA, Sommer S, Fu GC. Angew. Chem. Int. Ed. 2007; 46: 3556
- 5c Dai X, Strotman NA, Fu GC. J. Am. Chem. Soc. 2008; 130: 3302
- 6a Okuro K, Furuune M, Enna M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 4716
- 6b Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450
- 6c Gujadhur RK, Bates CG, Venkataraman D. Org. Lett. 2001; 3: 4315
- 6d Li J.-H, Li J.-L, Wang D.-P, Pi S.-F, Xie Y.-X, Zhang M.-B, Hu X.-C. J. Org. Chem. 2007; 72: 2053
- 6e Monnier F, Turtaut FO, Duroure L, Taillefer M. Org. Lett. 2008; 10: 3203
- 6f Zou L.-H, Johansson AJ, Zuidema E, Bolm C. Chem. Eur. J. 2013; 19: 8144
- 7a Takeda T, Matsunaga KI, Kabasawa Y, Fujiwara T. Chem. Lett. 1995; 771
- 7b Falck JR, Bhatt RK, Ye J. J. Am. Chem. Soc. 1995; 117: 5973
- 7c Allred GD, Liebeskind LS. J. Am. Chem. Soc. 1996; 118: 2748
- 7d Kang S.-K, Kim J.-S, Choi S.-C. J. Org. Chem. 1997; 62: 4208
- 8a Thathagar MB, Beckers J, Rothenberg G. J. Am. Chem. Soc. 2002; 124: 11858
- 8b Thathagar MB, Beckers J, Rothenberg G. Adv. Synth. Catal. 2003; 345: 979
- 8c Li J.-H, Wang D.-P. Eur. J. Org. Chem. 2006; 2063
- 8d Li J.-H, Li J.-L, Xie Y.-X. Synthesis 2007; 984
- 8e Mao J, Guo J, Fang F, Ji S.-J. Tetrahedron 2008; 64: 3905
- 8f Ye Y.-M, Wang B.-B, Ma D, Shao L.-X, Lu J.-M. Catal. Lett. 2010; 139: 141
- 8g Yang C.-T, Zhang Z.-Q, Liu Y.-C, Liu L. Angew. Chem. Int. Ed. 2011; 50: 3904
- 8h Wang S, Wang M, Wang L, Wang B, Li P, Yang J. Tetrahedron 2011; 67: 4800
- 8i Gurung SK, Thapa S, Kafle A, Dickie DA, Giri R. Org. Lett. 2014; 16: 1264
- 9 Liwosz TW, Chemler SR. Org. Lett. 2013; 15: 3034
- 10a Denmark SE, Baird JD. Org. Lett. 2004; 6: 3649
- 10b Hanamoto T, Kobayashi T, Kondo M. Synlett 2001; 0281
- 10c Nakao Y, Imanaka H, Sahoo AK, Yada A, Hiyama T. J. Am. Chem. Soc. 2005; 127: 6952
- 10d Nakao Y, Takeda M, Matsumoto T, Hiyama T. Angew. Chem. Int. Ed. 2010; 49: 4447
- 10e Liu XX, Deng MZ. Chem. Commun. 2002; 622
- 10f Deng JZ, Paone DV, Ginnetti AT, Kurihara H, Dreher SD, Weissman SA, Stauffer SR, Burgey CS. Org. Lett. 2009; 11: 345
- 10g Lipshutz BH, Nihan DM, Vinogradova E, Taft BR, Bogkovic ZV. Org. Lett. 2008; 10: 4279
- 11 Ito H, Sensui H.-o, Arimoto K, Miura K, Hosomi A. Chem. Lett. 1997; 639
- 12a Nishihara Y, Ikegashira K, Toriyama F, Mori A, Hiyama T. Bull. Chem. Soc. Jpn. 2000; 73: 985
- 12b Louërat F, Gros PC. Tetrahedron Lett. 2010; 51: 3558
- 12c Itami K, Ushiogi Y, Nokami T, Ohashi Y, Yoshida J.-i. Org. Lett. 2004; 6: 3695
- 12d Ikegashira K, Nishihara Y, Hirabayashi K, Mori A, Hiyama T. Chem. Commun. 1997; 1039
- 13a Herron JR, Ball ZT. J. Am. Chem. Soc. 2008; 130: 16486
- 13b Herron JR, Russo V, Valente EJ, Ball ZT. Chem. Eur. J. 2009; 15: 8713
- 13c Russo V, Herron JR, Ball ZT. Org. Lett. 2009; 12: 220
- 14 Lee KS, Hoveyda AH. J. Org. Chem. 2009; 74: 4455
- 15a Franz AK, Woerpel KA. J. Am. Chem. Soc. 1999; 121: 949
- 15b Taguchi H, Ghoroku K, Tadaki M, Tsubouchi A, Takeda T. J. Org. Chem. 2002; 67: 8450
- 15c Taguchi H, Ghoroku K, Tadaki M, Tsubouchi A, Takeda T. Org. Lett. 2001; 3: 3811
- 15d Tomita D, Wada R, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2005; 127: 4138
- 15e Yamasaki S, Fujii K, Wada R, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2002; 124: 6536
- 15f Nguyen MH, Smith AB. Org. Lett. 2013; 15: 4872
- 15g Tsubouchi A, Muramatsu D, Takeda T. Angew. Chem. Int. Ed. 2013; 52: 12719
- 16a Zarotti P, Knöpfel TF, Aschwanden P, Carreira EM. ACS Catal. 2012; 2: 1232
- 16b Knöpfel TF, Zarotti P, Ichikawa T, Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682
- 16c Knöpfel TF, Carreira EM. J. Am. Chem. Soc. 2003; 125: 6054
- 17 Gurung SK, Thapa S, Vangala AS, Giri R. Org. Lett. 2013; 15: 5378
- 18a Strieter ER, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 78
- 18b Strieter ER, Blackmond DG, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4120
- 18c Giri R, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 15860
- 18d Tye JW, Weng Z, Johns AM, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 9971
- 19 Becht JM, Ngouela S, Wagner A, Mioskowski C. Tetrahedron 2004; 60: 6853
- 20 Bai L, Wang JX. Adv. Synth. Catal. 2008; 350: 315
- 21 Estrada LA, Montes VA, Zyryanov G, Anzenbacher P. J. Phys. Chem. B 2007; 111: 6983
For selected examples of nickel-catalyzed Suzuki–Miyaura coupling, see:
For Fe-catalyzed Suzuki–Miyaura coupling, see:
Effects of copper salts on reactions involving organosilicon reagents, see:
For effects of copper salts on palladium-catalyzed Suzuki–Miyaura coupling, see:
For effects of copper salts on nickel-catalyzed Suzuki–Miyaura coupling, see:
For homocouplings of vinyl-, alkynyl-, and arylsilicon reagents with stoichiometric amounts of copper salts, see:
For a similar catalytic cycle in Ullmann amination, see: