Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(14): 1856-1860
DOI: 10.1055/s-0033-1339449
DOI: 10.1055/s-0033-1339449
letter
Palladium-Catalyzed Intramolecular Cyclization of 2-Iodobenzamides: An Efficient Synthesis of 3-Acyl Isoindolin-1-ones and 3-Hydroxy-3-acylisoindolin-1-ones
Further Information
Publication History
Received: 23 April 2013
Accepted after revision: 20 June 2013
Publication Date:
24 July 2013 (online)
Abstract
Palladium-catalyzed intramolecular cyclization of 2-iodobenzamides with a 2-oxoethyl function group on the nitrogen atom moiety is presented, providing an efficient method for the synthesis of 3-acyl isoindolin-1-ones and 3-hydroxy-3-acylisoindolin-1-ones under mild conditions in moderate yields.
Key words
intramolecular cyclization - palladium-catalyzed - 3-acyl isoindolin-1-ones - 3-hydroxy-3-acylisoindolin-1-ones - 2-iodobenzamidesSupporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1a Kundu NG, Khan MW, Mukhopadhyay RJ. Indian Chem. Soc. 2001; 78: 671
- 1b Bhandari A, Boros EE, Cowan DJ, Handlon AL, Hyman CE, Oplinger JA, Rabinowitz MH, Turnbull PS. Int. Pat. Appl. WO03076440, 2003 ; Chem. Abstr. 2003, 139, 261291.
- 1c Wood JL, Petsch DT, Stoltz BM, Hawkins EM, Elbaum D, Stover DR. Synthesis 1999; 1529
- 1d Comins DL, Schilling S, Zhang Y. Org. Lett. 2005; 7: 95
- 1e Belliotti TR, Brink WA, Kesten SR, Rubin JR, Wustrow DJ, Zoski KT, Whetzel SZ, Corbin AE, Pugsley TA, Heffner TG, Wise LD. Bioorg. Med. Chem. Lett. 1998; 8: 1499
- 1f Honma T, Hayashi K, Aoyama T, Hashimoto N, Machida T, Fukasawa K, Iwama T, Ikeura C, Ikuta M, Suzuki-Takahashi I, Iwasawa Y, Hayama T, Nishimura S, Morishima H. J. Med. Chem. 2001; 44: 4615
- 2 Substituted 3-methyleneisoindolinones also constitute an important class of biologically active products; see: Reyes-González MA, Zamudio-Medina A, Ordóñez M. Tetrahedron Lett. 2012; 53: 5756 ; and references therein
- 3a Sorbera LA, Leeson PA, Silvestre J, Castaner J. Drugs Future 2001; 26: 651
- 3b Stuk TL, Assink BK, Bates Jr. RC, Erdman DT, Fedij V, Jennings SM, Lassig JA, Smith RJ, Smith TL. Org. Process Res. Dev. 2003; 7: 851
- 4 Fuchs JR, Funk RL. Org. Lett. 2001; 3: 3923
- 5a Li E, Jiang L, Guo L, Zhang H, Che Y. Bioorg. Med. Chem. 2008; 16: 7894
- 5b Slavov N, Cvengros J, Neudoerfl JM, Schmalz HG. Angew. Chem. Int. Ed. 2010; 49: 7588
- 6 Lubbers T, Angehrn P, Gmunderb H, Herzig S. Bioorg. Med. Chem. Lett. 2007; 17: 4708
- 7a Beak P, Kerrick ST, Donald JG. J. Am. Chem. Soc. 1993; 115: 10628
- 7b Bousquet T, Fleury J.-F, Daich A, Netchitailo P. Tetrahedron 2006; 62: 706
- 7c Pearson WH, Dietz A, Stoy P. Org. Lett. 2004; 6: 1005
- 8a Guo Z, Schultz AG. J. Org. Chem. 2001; 66: 2154
- 8b Pérard-Viret J, Prangé T, Tomas A, Royer J. Tetrahedron 2002; 58: 5103
- 8c Wang EC, Chen HF, Feng PK, Lin YL, Hsu MK. Tetrahedron Lett. 2002; 43: 9163
- 9 Kuninobu Y, Tokunaga Y, Kawata A, Taka K. J. Am. Chem. Soc. 2006; 128: 202
- 10 Klumpp DA, Zhang Y, O’Connor MJ, Esteves PM, Almeid LS. Org. Lett. 2007; 9: 3085
- 11 Orito K, Miyazawa M, Nakamura T, Horibata A, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Yamazaki T, Tokuda M. J. Org. Chem. 2006; 71: 5951
- 12 Kobayashi K, Hase M, Hashimoto K, Fujita S, Tanmatsu M, Morikawa O, Konishi H. Synthesis 2006; 2493
- 13a Zhu C, Falck JR. Org. Lett. 2011; 13: 1214
- 13b Wrigglesworth JW, Cox B, Lloyd-Jones GC, Booker-Milburn KI. Org. Lett. 2011; 13: 5326
- 13c Li D.-D, Yuan TT, Wang GW. Chem. Commun. 2011; 12789
- 14a Wang F, Song G, Li X. Org. Lett. 2010; 12: 5430
- 14b Patureau FW, Besset T, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1064
- 14c Zhu C, Falck JR. Tetrahedron 2012; 68: 9192
- 14d Zhu C, Xie W, Falck JR. Chem. Eur. J. 2011; 17: 12591
- 14e Zhu C, Falck JR. Chem. Commun. 2012; 48: 1674
- 15 Ackermann L, Wang L, Wolfram R, Lygin AV. Org. Lett. 2012; 14: 728
- 16 Chen W, Cui J, Zhu Y, Hu X, Mo W. J. Org. Chem. 2012; 77: 1585
- 17 Recently, Sole and Serrano have reported the synthesis of isoindoline derivatives through palladium-catalyzed intramolecular α-arylation reactions of α-amino acid esters. See: Solé D, Serrano O. J. Org. Chem. 2010; 75: 6267
- 18a Nieto S, Sayago FJ, Laborda P, Soler T, Cativiela C, Urriolabeitia EP. Tetrahedron 2011; 67: 4185
- 18b Huang X, Xu J. J. Org. Chem. 2009; 74: 8859
- 18c Schmitt G, An ND, Poupelin JP, Vebrel J, Laude B. Synthesis 1984; 758
- 19a Dempster RK, Luzzio FA. Tetrahedron Lett. 2011; 52: 4992
- 19b Colquhoun HM, Zhu Z, Cardin CJ, White AJ. P, Drew MG. B, Gan Y. Org. Lett. 2010; 12: 3756
- 19c Kise N, Isemoto S, Sakurai T. Tetrahedron 2012; 68: 8805
- 19d Wang EC, Chen HF, Feng PK, Lin YL, Hsu MK. Tetrahedron Lett. 2002; 43: 9163
- 19e Kitching MS, Clegg W, Elsegood MR. J, Griffin RJ, Golding BT. Synlett 1999; 997
- 20 General Procedure for the Synthesis of 2:2-Iodobenzamide 1 (0.3 mmol), Pd2(dba)3·CHCl3 (0.0075 mmol), Xantphos (0.015 mmol), and i-PrOH (1 mL) were added into a Schlenk tube at r.t. under N2. After stirring for 5 min, Et3N (1 mL) was added. The reaction mixture was stirred at 70 °C until the reaction was complete, as monitored by TLC (usually 2–5 h). Then the reaction mixture was cooled and the solvent was removed under reduced pressure. Dilute HCl (15 mL) was added, the aqueous layer was extracted with EtOAc (3 × 15 mL) and dried over MgSO4. After filtration and removal of the solvent in vacuo, the residues were purified by flash chromatography (silica gel; PE–EtOAc, 5:1 → 4:1) to afford 2.3-Benzoyl-2-phenylisoindolin-1-one (2a): solid (mp 178–180 °C). 1H NMR (500 MHz, CDCl3): δ = 7.99 (d, J = 7.4 Hz, 1 H), 7.95 (d, J = 7.5 Hz, 2 H), 7.69 (d, J = 8.0 Hz, 2 H), 7.64 (t, J = 7.5 Hz, 1 H), 7.47–7.54 (m, 4 H), 7.33 (t, J = 8.2 Hz, 2 H), 7.29 (d, J = 7.5 Hz, 1 H), 7.13 (d, J = 7.4 Hz, 1 H), 6.65 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 193.3, 167.7, 138.8, 138.1, 135.1, 134.2, 132.4, 132.3, 129.4, 129.2, 129.1, 128.7, 125.1, 124.8, 122.5, 121.0, 67.0. IR: 3056, 1687, 1372, 752 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C21H16NO2: 314.1181; found: 314.1177.
- 21a Doering WE, Haines RM. J. Am. Chem. Soc. 1954; 76: 482
- 21b Gardner JN, Carlona FE, Gnoj O. J. Org. Chem. 1968; 33: 3294
- 21c Paquette LA, DeRussy DT, Pegg NA, Taylor RT, Zydowsky TM. J. Org. Chem. 1989; 54: 4576
- 21d Konen DA, Silbert LS, Pfeffer PE. J. Org. Chem. 1975; 40: 3253
- 21e Gardner JN, Popperf L, Carlon E, Gnoj O, Herzog HL. J. Org. Chem. 1968; 33: 3695
- 21f Lubin H, Tessier A, Chaume G, Pytkowicz J, Brigaud T. Org. Lett. 2010; 12: 1496
- 21g Yang Y, Moinodeen F, Chin W, Ma T, Jiang Z, Tan CH. Org. Lett. 2012; 14: 4762
- 21h At present, the mechanism for the aerobic oxidation of 3-acylisoindoline is not clear. We think that this transformation could be a radical reaction between isoindolin-1-one and oxygen because the reaction could be blocked when 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was added.
- 22 General Procedure for the Synthesis of 3:2-Iodobenzamides 1 (0.3 mmol), Pd2(dba)3·CHCl3 (0.0075 mmol), Xantphos (0.015 mmol), and i-PrOH (1 mL) were added into a Schlenk tube at r.t. under N2. After stirring for 5 min, Et3N (1 mL) was added. The reaction mixture was stirred at 70 °C until the reaction was complete, as monitored by TLC (usually 2–5 h). Then the reaction mixture was stirred continuously under O2 for 24 h. The reaction mixture was cooled and the solvent was removed under reduced pressure. Saturated NaCl (15 mL) was added, the aqueous layer was extracted with EtOAc (3 × 15 mL) and dried over MgSO4. After filtration and removal of the solvent in vacuo, the residues were purified by flash chromatography (silica gel; PE–EtOAc, 5:1 → 4:1) to afford 3.3-Benzoyl-3-hydroxy-2-phenylisoindolin-1-one (3a): solid (mp 124–126 °C). 1H NMR (500 MHz, CDCl3): δ = 8.05–8.07 (m, 1 H), 7.61–7.67 (m, 2 H), 7.47–7.51 (m, 3 H), 7.40–7.41 (m, 1 H), 7.24–7.29 (m, 5 H), 7.19–7.21 (m, 2 H), 6.02 (br s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 195.7, 167.8, 144.1, 134.7, 134.2, 133.6, 132.4, 131.4, 130.8, 129.3, 129.0, 128.8, 127.6, 126.8, 124.8, 122.7, 91.8. IR: 3254, 1684, 1386, 741 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C21H16NO3: 330.1130; found: 330.1142.
For the synthesis of 3-acyl isoindolin-1-one derivatives, see:
For the synthesis of 3-hydroxy isoindolin-1-one derivatives, see:
It has been reported that carbonyl compounds can react with molecular oxygen under basic conditions: